2 resultados para Rough surface
em Université de Montréal, Canada
Resumo:
Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.
Resumo:
La synthèse d'images dites photoréalistes nécessite d'évaluer numériquement la manière dont la lumière et la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous bénéficions aujourd'hui et qui ne cesse d'augmenter, est encore bien loin de devenir une tâche triviale pour nos ordinateurs. Ceci est dû en majeure partie à la manière dont nous représentons les objets: afin de reproduire les interactions subtiles qui mènent à la perception du détail, il est nécessaire de modéliser des quantités phénoménales de géométries. Au moment du rendu, cette complexité conduit inexorablement à de lourdes requêtes d'entrées-sorties, qui, couplées à des évaluations d'opérateurs de filtrage complexes, rendent les temps de calcul nécessaires à produire des images sans défaut totalement déraisonnables. Afin de pallier ces limitations sous les contraintes actuelles, il est nécessaire de dériver une représentation multiéchelle de la matière. Dans cette thèse, nous construisons une telle représentation pour la matière dont l'interface correspond à une surface perturbée, une configuration qui se construit généralement via des cartes d'élévations en infographie. Nous dérivons notre représentation dans le contexte de la théorie des microfacettes (conçue à l'origine pour modéliser la réflectance de surfaces rugueuses), que nous présentons d'abord, puis augmentons en deux temps. Dans un premier temps, nous rendons la théorie applicable à travers plusieurs échelles d'observation en la généralisant aux statistiques de microfacettes décentrées. Dans l'autre, nous dérivons une procédure d'inversion capable de reconstruire les statistiques de microfacettes à partir de réponses de réflexion d'un matériau arbitraire dans les configurations de rétroréflexion. Nous montrons comment cette théorie augmentée peut être exploitée afin de dériver un opérateur général et efficace de rééchantillonnage approximatif de cartes d'élévations qui (a) préserve l'anisotropie du transport de la lumière pour n'importe quelle résolution, (b) peut être appliqué en amont du rendu et stocké dans des MIP maps afin de diminuer drastiquement le nombre de requêtes d'entrées-sorties, et (c) simplifie de manière considérable les opérations de filtrage par pixel, le tout conduisant à des temps de rendu plus courts. Afin de valider et démontrer l'efficacité de notre opérateur, nous synthétisons des images photoréalistes anticrenelées et les comparons à des images de référence. De plus, nous fournissons une implantation C++ complète tout au long de la dissertation afin de faciliter la reproduction des résultats obtenus. Nous concluons avec une discussion portant sur les limitations de notre approche, ainsi que sur les verrous restant à lever afin de dériver une représentation multiéchelle de la matière encore plus générale.