2 resultados para Robotics, Automation, Vision systems

em Université de Montréal, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse a pour but d’améliorer l’automatisation dans l’ingénierie dirigée par les modèles (MDE pour Model Driven Engineering). MDE est un paradigme qui promet de réduire la complexité du logiciel par l’utilisation intensive de modèles et des transformations automatiques entre modèles (TM). D’une façon simplifiée, dans la vision du MDE, les spécialistes utilisent plusieurs modèles pour représenter un logiciel, et ils produisent le code source en transformant automatiquement ces modèles. Conséquemment, l’automatisation est un facteur clé et un principe fondateur de MDE. En plus des TM, d’autres activités ont besoin d’automatisation, e.g. la définition des langages de modélisation et la migration de logiciels. Dans ce contexte, la contribution principale de cette thèse est de proposer une approche générale pour améliorer l’automatisation du MDE. Notre approche est basée sur la recherche méta-heuristique guidée par les exemples. Nous appliquons cette approche sur deux problèmes importants de MDE, (1) la transformation des modèles et (2) la définition précise de langages de modélisation. Pour le premier problème, nous distinguons entre la transformation dans le contexte de la migration et les transformations générales entre modèles. Dans le cas de la migration, nous proposons une méthode de regroupement logiciel (Software Clustering) basée sur une méta-heuristique guidée par des exemples de regroupement. De la même façon, pour les transformations générales, nous apprenons des transformations entre modèles en utilisant un algorithme de programmation génétique qui s’inspire des exemples des transformations passées. Pour la définition précise de langages de modélisation, nous proposons une méthode basée sur une recherche méta-heuristique, qui dérive des règles de bonne formation pour les méta-modèles, avec l’objectif de bien discriminer entre modèles valides et invalides. Les études empiriques que nous avons menées, montrent que les approches proposées obtiennent des bons résultats tant quantitatifs que qualitatifs. Ceux-ci nous permettent de conclure que l’amélioration de l’automatisation du MDE en utilisant des méthodes de recherche méta-heuristique et des exemples peut contribuer à l’adoption plus large de MDE dans l’industrie à là venir.