9 resultados para Reversible Hopf-zero bifurcation
em Université de Montréal, Canada
Resumo:
Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous développons ainsi deux mécanismes permettant de conclure qu’un point singulier monodromique dans ce système non-linéaire polynomial est un centre. Le premier mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques invariantes dans la construction d’une intégrale première. La deuxième méthode analyse la réversibilité algébrique ou analytique du système. Un système possédant une singularité monodromique et étant algébriquement ou analytiquement réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss généralisé avec récolte de proies.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In an economy where cash can be stored costlessly (in nominal terms), the nominal interest rate is bounded below by zero. This paper derives the implications of this nonnegativity constraint for the term structure and shows that it induces a nonlinear and convex relation between short- and long-term interest rates. As a result, the long-term rate responds asymmetrically to changes in the short-term rate, and by less than predicted by a benchmark linear model. In particular, a decrease in the short-term rate leads to a decrease in the long-term rate that is smaller in magnitude than the increase in the long-term rate associated with an increase in the short-term rate of the same size. Up to the extent that monetary policy acts by affecting long-term rates through the term structure, its power is considerably reduced at low interest rates. The empirical predictions of the model are examined using data from Japan.
Resumo:
This paper considers various asymptotic approximations in the near-integrated firstorder autoregressive model with a non-zero initial condition. We first extend the work of Knight and Satchell (1993), who considered the random walk case with a zero initial condition, to derive the expansion of the relevant joint moment generating function in this more general framework. We also consider, as alternative approximations, the stochastic expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We assess how these alternative methods provide or not an adequate approximation to the finite-sample distribution of the least-squares estimator in a first-order autoregressive model. The results show that, when the initial condition is non-zero, Perron's (1991) continuous time approximation performs very well while the others only offer improvements when the initial condition is zero.
Resumo:
Many unit root and cointegration tests require an estimate of the spectral density function at frequency zero at some process. Kernel estimators based on weighted sums of autocovariances constructed using estimated residuals from an AR(1) regression are commonly used. However, it is known that with substantially correlated errors, the OLS estimate of the AR(1) parameter is severely biased. in this paper, we first show that this least squares bias induces a significant increase in the bias and mean-squared error of kernel-based estimators.
Resumo:
L’ischémie aigüe (restriction de la perfusion suite à l’infarctus du myocarde) induit des changements majeurs des propriétés électrophysiologique du tissu ventriculaire. Dans la zone ischémique, on observe une augmentation du potassium extracellulaire qui provoque l’élévation du potentiel membranaire et induit un "courant de lésion" circulant entre la zone affectée et saine. Le manque d’oxygène modifie le métabolisme des cellules et diminue la production d’ATP, ce qui entraîne l’ouverture de canaux potassique ATP-dépendant. La tachycardie, la fibrillation ventriculaire et la mort subite sont des conséquences possibles de l’ischémie. Cependant les mécanismes responsables de ces complications ne sont pas clairement établis. La création de foyer ectopique (automaticité), constitue une hypothèse intéressante expliquant la création de ses arythmies. Nous étudions l’effet de l’ischémie sur l’automaticité à l’aide d’un modèle mathématique de la cellule ventriculaire humaine (Ten Tusscher, 2006) et d’une analyse exhaustive des bifurcations en fonction de trois paramètres : la concentration de potassium extracellulaire, le "courant de lésion" et l’ouverture de canaux potassiques ATP-dépendant. Dans ce modèle, nous trouvons que seule la présence du courant de lésion peut entrainer une activité automatique. Les changements de potassium extracellulaire et du courant potassique ATP-dépendant altèrent toutefois la structure de bifurcation.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ce mémoire consiste en l’étude du comportement dynamique de deux oscillateurs FitzHugh-Nagumo identiques couplés. Les paramètres considérés sont l’intensité du courant injecté et la force du couplage. Juqu’à cinq solutions stationnaires, dont on analyse la stabilité asymptotique, peuvent co-exister selon les valeurs de ces paramètres. Une analyse de bifurcation, effectuée grâce à des méthodes tant analytiques que numériques, a permis de détecter différents types de bifurcations (point de selle, Hopf, doublement de période, hétéroclinique) émergeant surtout de la variation du paramètre de couplage. Une attention particulière est portée aux conséquences de la symétrie présente dans le système.
Resumo:
Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.