5 resultados para Resistência de acessos e híbridos de Panicum maximum à mancha das folhas
em Université de Montréal, Canada
Resumo:
Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal
Resumo:
Les gènes codant pour des protéines peuvent souvent être regroupés et intégrés en modules fonctionnels par rapport à un organelle. Ces modules peuvent avoir des composantes qui suivent une évolution corrélée pouvant être conditionnelle à un phénotype donné. Les gènes liés à la motilité possèdent cette caractéristique, car ils se suivent en cascade en réponse à des stimuli extérieurs. L’hyperthermophilie, d’autre part, est interreliée à la reverse gyrase, cependant aucun autre élément qui pourrait y être associé avec certitude n’est connu. Ceci peut être dû à un déplacement de gènes non orthologues encore non résolu. En utilisant une approche bio-informatique, une modélisation mathématique d’évolution conditionnelle corrélée pour trois gènes a été développée et appliquée sur des profils phylétiques d’archaea. Ceci a permis d’établir des théories quant à la fonction potentielle du gène du flagelle FlaD/E ainsi que l’histoire évolutive des gènes lui étant liés et ayant contribué à sa formation. De plus, une histoire évolutive théorique a été établie pour une ligase liée à l’hyperthermophilie.
Resumo:
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.
Resumo:
Voir la bibliographie du mémoire pour les références du résumé. See the thesis`s bibliography for the references in the summary.