5 resultados para Relevance Feature Extraction

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il est avant-tout question, dans ce mémoire, de la modélisation du timbre grâce à des algorithmes d'apprentissage machine. Plus précisément, nous avons essayé de construire un espace de timbre en extrayant des caractéristiques du son à l'aide de machines de Boltzmann convolutionnelles profondes. Nous présentons d'abord un survol de l'apprentissage machine, avec emphase sur les machines de Boltzmann convolutionelles ainsi que les modèles dont elles sont dérivées. Nous présentons aussi un aperçu de la littérature concernant les espaces de timbre, et mettons en évidence quelque-unes de leurs limitations, dont le nombre limité de sons utilisés pour les construire. Pour pallier à ce problème, nous avons mis en place un outil nous permettant de générer des sons à volonté. Le système utilise à sa base des plug-ins qu'on peut combiner et dont on peut changer les paramètres pour créer une gamme virtuellement infinie de sons. Nous l'utilisons pour créer une gigantesque base de donnée de timbres générés aléatoirement constituée de vrais instruments et d'instruments synthétiques. Nous entrainons ensuite les machines de Boltzmann convolutionnelles profondes de façon non-supervisée sur ces timbres, et utilisons l'espace des caractéristiques produites comme espace de timbre. L'espace de timbre ainsi obtenu est meilleur qu'un espace semblable construit à l'aide de MFCC. Il est meilleur dans le sens où la distance entre deux timbres dans cet espace est plus semblable à celle perçue par un humain. Cependant, nous sommes encore loin d'atteindre les mêmes capacités qu'un humain. Nous proposons d'ailleurs quelques pistes d'amélioration pour s'en approcher.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La documentation des programmes aide les développeurs à mieux comprendre le code source pendant les tâches de maintenance. Toutefois, la documentation n’est pas toujours disponible ou elle peut être de mauvaise qualité. Le recours à la redocumentation s’avère ainsi nécessaire. Dans ce contexte, nous proposons de faire la redocumentation en générant des commentaires par application de techniques de résumé par extraction. Pour mener à bien cette tâche, nous avons commencé par faire une étude empirique pour étudier les aspects quantitatifs et qualitatifs des commentaires. En particulier, nous nous sommes intéressés à l’étude de la distribution des commentaires par rapport aux différents types d’instructions et à la fréquence de documentation de chaque type. Aussi, nous avons proposé une taxonomie de commentaires pour classer les commentaires selon leur contenu et leur qualité. Suite aux résultats de l’étude empirique, nous avons décidé de résumer les classes Java par extraction des commentaires des méthodes/constructeurs. Nous avons défini plusieurs heuristiques pour déterminer les commentaires les plus pertinents à l’extraction. Ensuite, nous avons appliqué ces heuristiques sur les classes Java de trois projets pour en générer les résumés. Enfin, nous avons comparé les résumés produits (les commentaires produits) à des résumés références (les commentaires originaux) en utilisant la métrique ROUGE.