4 resultados para Reinforcement Learning
em Université de Montréal, Canada
Resumo:
Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.
Resumo:
Les réseaux optiques à commutation de rafales (OBS) sont des candidats pour jouer un rôle important dans le cadre des réseaux optiques de nouvelle génération. Dans cette thèse, nous nous intéressons au routage adaptatif et au provisionnement de la qualité de service dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la capacité du routage multi-chemins et du routage alternatif (par déflection) à améliorer les performances des réseaux OBS, pro-activement pour le premier et ré-activement pour le second. Dans ce contexte, nous proposons une approche basée sur l’apprentissage par renforcement où des agents placés dans tous les nœuds du réseau coopèrent pour apprendre, continuellement, les chemins du routage et les chemins alternatifs optimaux selon l’état actuel du réseau. Les résultats numériques montrent que cette approche améliore les performances des réseaux OBS comparativement aux solutions proposées dans la littérature. Dans la deuxième partie de cette thèse, nous nous intéressons au provisionnement absolu de la qualité de service où les performances pire-cas des classes de trafic de priorité élevée sont garanties quantitativement. Plus spécifiquement, notre objectif est de garantir la transmission sans pertes des rafales de priorité élevée à l’intérieur du réseau OBS tout en préservant le multiplexage statistique et l’utilisation efficace des ressources qui caractérisent les réseaux OBS. Aussi, nous considérons l’amélioration des performances du trafic best effort. Ainsi, nous proposons deux approches : une approche basée sur les nœuds et une approche basée sur les chemins. Dans l’approche basée sur les nœuds, un ensemble de longueurs d’onde est assigné à chaque nœud du bord du réseau OBS pour qu’il puisse envoyer son trafic garanti. Cette assignation prend en considération les distances physiques entre les nœuds du bord. En outre, nous proposons un algorithme de sélection des longueurs d’onde pour améliorer les performances des rafales best effort. Dans l’approche basée sur les chemins, le provisionnement absolu de la qualité de service est fourni au niveau des chemins entre les nœuds du bord du réseau OBS. À cette fin, nous proposons une approche de routage et d’assignation des longueurs d’onde qui a pour but la réduction du nombre requis de longueurs d’onde pour établir des chemins sans contentions. Néanmoins, si cet objectif ne peut pas être atteint à cause du nombre limité de longueurs d’onde, nous proposons de synchroniser les chemins en conflit sans le besoin pour des équipements additionnels. Là aussi, nous proposons un algorithme de sélection des longueurs d’onde pour les rafales best effort. Les résultats numériques montrent que l’approche basée sur les nœuds et l’approche basée sur les chemins fournissent le provisionnement absolu de la qualité de service pour le trafic garanti et améliorent les performances du trafic best effort. En outre, quand le nombre de longueurs d’ondes est suffisant, l’approche basée sur les chemins peut accommoder plus de trafic garanti et améliorer les performances du trafic best effort par rapport à l’approche basée sur les nœuds.
Resumo:
Grâce à leur flexibilité et à leur facilité d’installation, les réseaux maillés sans fil (WMNs) permettent un déploiement d’une infrastructure à faible coût. Ces réseaux étendent la couverture des réseaux filaires permettant, ainsi, une connexion n’importe quand et n’importe où. Toutefois, leur performance est dégradée par les interférences et la congestion. Ces derniers causent des pertes de paquets et une augmentation du délai de transmission d’une façon drastique. Dans cette thèse, nous nous intéressons au routage adaptatif et à la stabilité dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la conception d’une métrique de routage et à la sélection des passerelles permettant d’améliorer la performance des WMNs. Dans ce contexte nous proposons un protocole de routage à la source basé sur une nouvelle métrique. Cette métrique permet non seulement de capturer certaines caractéristiques des liens tels que les interférences inter-flux et intra-flux, le taux de perte des paquets mais également la surcharge des passerelles. Les résultats numériques montrent que la performance de cette métrique est meilleure que celle des solutions proposées dans la littérature. Dans une deuxième partie de la thèse, nous nous intéressons à certaines zones critiques dans les WMNs. Ces zones se trouvent autour des passerelles qui connaissent une concentration plus élevé du trafic ; elles risquent de provoquer des interférences et des congestions. À cet égard, nous proposons un protocole de routage proactif et adaptatif basé sur l’apprentissage par renforcement et qui pénalise les liens de mauvaise qualité lorsqu’on s’approche des passerelles. Un chemin dont la qualité des liens autour d’une passerelle est meilleure sera plus favorisé que les autres chemins de moindre qualité. Nous utilisons l’algorithme de Q-learning pour mettre à jour dynamiquement les coûts des chemins, sélectionner les prochains nœuds pour faire suivre les paquets vers les passerelles choisies et explorer d’autres nœuds voisins. Les résultats numériques montrent que notre protocole distribué, présente de meilleurs résultats comparativement aux protocoles présentés dans la littérature. Dans une troisième partie de cette thèse, nous nous intéressons aux problèmes d’instabilité des réseaux maillés sans fil. En effet, l’instabilité se produit à cause des changements fréquents des routes qui sont causés par les variations instantanées des qualités des liens dues à la présence des interférences et de la congestion. Ainsi, après une analyse de l’instabilité, nous proposons d’utiliser le nombre de variations des chemins dans une table de routage comme indicateur de perturbation des réseaux et nous utilisons la fonction d’entropie, connue dans les mesures de l’incertitude et du désordre des systèmes, pour sélectionner les routes stables. Les résultats numériques montrent de meilleures performances de notre protocole en comparaison avec d’autres protocoles dans la littérature en termes de débit, délai, taux de perte des paquets et l’indice de Gini.
Resumo:
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.