6 resultados para Regular Linear System
em Université de Montréal, Canada
Resumo:
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.
Resumo:
Part of the research described in this thesis is conducted in collaboration with Centre d' étude et de Recherche sur les Macromolécules (CERM), Université de Liège, Sart-Tilman, Belgium
Resumo:
The central hypothesis to be tested is the relevance of gold in the determination of the value of the US dollar as an international reserve currency after 1971. In the first section the market value of the US dollar is analysed by looking at new forms of value (financial derivative products), the dollar as a safe haven, the choice of a standard of value and the role of SDRs in reforming the international monetary system. Based on dimensional analysis, the second section analyses the definition and meaning of a numéraire for international currency and the justification for a variable standard of value based on a commodity (gold). The second section is the theoretical foundation for the empirical and econometric analysis in the third and fourth sections. The third section is devoted to the specification of an econometric model and a graphical analysis of the data. It is clear that an inverse relation exists between the value of the US dollar and the price of gold. The fourth section shows the estimations of the different specifications of the model including linear regression and cointegration analysis. The most important econometric result is that the null hypothesis is rejected in favour of a significant link between the price of gold and the value of the US dollar. There is also a positive relationship between gold price and inflation. An inverse statistically significant relation between gold price and monetary policy is shown by applying a dynamic model of cointegration with lags.
Resumo:
La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.
Resumo:
Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1-/- spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop a HPLC–MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system is hampered and therefore affect significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1-/- spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p < 0.0001). No significant concentration differences were observed in mouse Tac1-/- spinal cords for Met-Enk and CGRP. The analysis of Tac1-/- mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.