5 resultados para Redes neuronales

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La présence d’un récepteur de type RXR a récemment été rapporté chez la pensée de mer, Renilla koellikeri, de même que chez d’autres anthozoaires, et le NO semble jouer des différents rôles physiologiques, chez plusieurs cnidaires. L’acide rétinoïque (AR) et le monoxyde d’azote (NO) sont connus pour leur implication dans l’induction de la croissance des neurites chez les vertébrés ainsi que chez les invertébrés. Mais jusqu’à présent, aucun rôle de ces agents n’a encore été identifié chez ce phylum ancien des invertébrés. Dans le but de montrer que ces agents morphogénétiques ont un rôle dans le développement neuronal chez ces ancêtres des métazoaires bilatéraux, nous avons utilisé des cultures primaires de cellules du cnidaire anthozoaire Renilla koellikeri (pensée de mer), doté d’un système nerveux des plus primitif. Nous avons trouvé que les deux types d’acide rétinoïque, 9-cis et 11-trans, induisent une prolifération cellulaire dose-dépendante en fonction du temps dans les boîtes de pétri enduites de polylysine. Les cultures cellulaires exposées à l’acide rétinoïque dans les boîtes sans polylysine montrent une différenciation en des cellules épithéliales. D’autre part, le NO induit exclusivement une différenciation neuronale dans les boîtes enduites de polylysine. Aucun autre type de cellules subit un différenciation en présence de NO et la densité des cellules dédifférenciées a diminué. Les prolongements des neurones différenciés semblent s’enchevêtrer et former un réseau neuronal assez dense. L’ensemble de ces observations suggère que l’acide rétinoïque, contrairement à NO, est associé à l’activité mitotique, et que l’acide rétinoïque et le NO sont impliqués différemment dans la spécification cellulaire, respectivement épithéliale et neuronale, chez la pensée de mer. Le type d’action déclenchée, qu’il soit la mitogénèse ou la différenciation (épithéliale ou neuronale), varie alors selon l’état d’adhésion des cellules au substrat. Comme les données moléculaires et paléontologiques rapprochent les cnidaires, telle la pensée de mer, des ancêtres des eumétazoaires, nos résultats suggèrent que le rôle morphogénétique de l’acide rétinoïque et du NO est enraciné dans l’ancêtre commun de tous les métazoaires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les neurones du cortex visuel primaire (aire 17) du chat adulte répondent de manière sélective à différentes propriétés d’une image comme l’orientation, le contraste ou la fréquence spatiale. Cette sélectivité se manifeste par une réponse sous forme de potentiels d’action dans les neurones visuels lors de la présentation d’une barre lumineuse de forme allongée dans les champs récepteurs de ces neurones. La fréquence spatiale (FS) se mesure en cycles par degré (cyc./deg.) et se définit par la quantité de barres lumineuses claires et sombres présentées à une distance précise des yeux. Par ailleurs, jusqu’à récemment, l’organisation corticale chez l’adulte était considérée immuable suite à la période critique post-natale. Or, lors de l'imposition d'un stimulus non préféré, nous avons observé un phénomène d'entrainement sous forme d'un déplacement de la courbe de sélectivité à la suite de l'imposition d'une FS non-préférée différente de la fréquence spatiale optimale du neurone. Une deuxième adaptation à la même FS non-préférée induit une réponse neuronale différente par rapport à la première imposition. Ce phénomène de "gain cortical" avait déjà été observé dans le cortex visuel primaire pour ce qui est de la sélectivité à l'orientation des barres lumineuses, mais non pour la fréquence spatiale. Une telle plasticité à court terme pourrait être le corrélat neuronal d'une modulation de la pondération relative du poids des afférences synaptiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

David Katz a fait l’observation que le mouvement entre la peau et l’objet est aussi important pour le sens du toucher que la lumière l’est pour la vision. Un stimulus tactile déplacé sur la peau active toutes les afférences cutanées. Les signaux résultants sont très complexes, covariant avec différents facteurs dont la vitesse, mais aussi la texture, la forme et la force. Cette thèse explore la capacité des humains à estimer la vitesse et la rugosité de surfaces en mouvements. Les bases neuronales de la vitesse tactile sont aussi étudiées en effectuant des enregistrements unitaires dans le cortex somatosensoriel primaire (S1) du singe éveillé. Dans la première expérience, nous avons montré que les sujets peuvent estimer la vitesse tactile (gamme de vitesses, 30 à 105 mm/s) de surfaces déplacées sous le doigt, et ceci sans indice de durée. Mais la structure des surfaces était essentielle (difficulté à estimer la vitesse d’une surface lisse). Les caractéristiques physiques des surfaces avaient une influence sur l’intensité subjective de la vitesse. La surface plus rugueuse (8 mm d’espacement entre les points en relief) semblait se déplacer 15% plus lentement que les surfaces moins rugueuses (de 2 et 3 mm d’espacement), pour les surfaces périodiques et non périodiques (rangées de points vs disposition aléatoire). L’effet de la texture sur la vitesse peut être réduit en un continuum monotonique quand les estimés sont normalisés avec l’espacement et présentés en fonction de la fréquence temporelle (vitesse/espacement). L'absence de changement des estimés de vitesse entre les surfaces périodiques et non périodiques suggère que les estimés de rugosité devraient aussi être indépendants de la disposition des points. Dans la deuxième expérience, et tel que prévu, une équivalence perceptuelle entre les deux séries de surfaces est obtenue quand les estimés de la rugosité sont exprimés en fonction de l'espacement moyen entre les points en relief, dans le sens de l'exploration. La troisième expérience consistait à rechercher des neurones du S1 qui pourraient expliquer l’intensité subjective de la vitesse tactile. L’hypothèse est que les neurones impliqués devraient être sensibles à la vitesse tactile (40 à 105 mm/s) et à l’espacement des points (2 à 8 mm) mais être indépendants de leur disposition (périodique vs non périodique). De plus, il est attendu que la fonction neurométrique (fréquence de décharge/espacement en fonction de la fréquence temporelle) montre une augmentation monotonique. Une grande proportion des cellules était sensible à la vitesse (76/119), et 82% d’entres elles étaient aussi sensibles à la texture. La sensibilité à la vitesse a été observée dans les trois aires du S1 (3b, 1 et 2). La grande majorité de cellules sensibles à la vitesse, 94%, avait une relation monotonique entre leur décharge et la fréquence temporelle, tel qu’attendu, et ce surtout dans les aires 1 et 2. Ces neurones pourraient donc expliquer la capacité des sujets à estimer la vitesse tactile de surfaces texturées.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depuis les années 1980, les archéologues ont remarqué l'originalité des collections de céramiques trouvées sur des sites occupés par les pêcheurs basques au cours du XVIe au XVIIIe siècle sur les côtes atlantiques du Canada. Le site de Red Bay (Labrador) a été le premier à fournir une riche collection de terre cuites communes, majoliques et grès, qui ont permis aux archéologues de reconnaître une tradition céramique distincte. Pendant plus de deux siècles, ces céramiques constituent un fil conducteur qui montre la permanence des activités commerciales basques au Canada. En utilisant une approche mutualiste et comparative de quatre sites de pêche basque (Red Bay (1530-1580), Anse-à-la-Cave (1580-1630), Petit-Mécatina (1630-1713), Pabos (1713- 1760)) et leurs ports d’attache dans l’Europe atlantique, nous observons comment à partir du milieu du XVIe siècle, l’ensemble des céramiques se transforme d'un endroit à l’autre sans perdre son air distinctif jusqu'au début du XVIIIe siècle quand les témoins des céramiques basques changent radicalement. Finalement, une perspective globale qui relie les deux côtes atlantiques par le biais de ces matériaux céramiques nous aide à mieux connaître les réseaux d'approvisionnement liés aux traversées de pêche et l’espace économique complexe qui s’articule aux routes maritimes et de l’intérieur. Ces deux éléments se veulent essentiels à la compréhension de l'expansion outremers, ses materiaux laissés et son rôle dans l'économie mondiale au début de l'époque moderne.