11 resultados para Random Regret Minimization
em Université de Montréal, Canada
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
This paper presents a new theory of random consumer demand. The primitive is a collection of probability distributions, rather than a binary preference. Various assumptions constrain these distributions, including analogues of common assumptions about preferences such as transitivity, monotonicity and convexity. Two results establish a complete representation of theoretically consistent random demand. The purpose of this theory of random consumer demand is application to empirical consumer demand problems. To this end, the theory has several desirable properties. It is intrinsically stochastic, so the econometrician can apply it directly without adding extrinsic randomness in the form of residuals. Random demand is parsimoniously represented by a single function on the consumption set. Finally, we have a practical method for statistical inference based on the theory, described in McCausland (2004), a companion paper.
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
Les travaux de recherche présentés ici avaient pour objectif principal la synthèse de copolymères statistiques à base d’éthylène et d’acide acrylique (AA). Pour cela, la déprotection des groupements esters d’un copolymère statistique précurseur, le poly(éthylène-co-(tert-butyl)acrylate), a été effectuée par hydrolyse à l’aide d’iodure de triméthylsilyle. La synthèse de ce précurseur est réalisée par polymérisation catalytique en présence d’un système à base de Palladium (Pd). Le deuxième objectif a été d’étudier et de caractériser des polymères synthétisés à l’état solide et en suspension colloïdale. Plusieurs copolymères précurseurs comprenant différents pourcentages molaires en tert-butyl acrylate (4 à 12% molaires) ont été synthétisés avec succès, puis déprotégés par hydrolyse pour obtenir des poly(éthylène-coacide acrylique) (pE-co-AA) avec différentes compositions. Seuls les copolymères comprenant 10% molaire ou plus de AA sont solubles dans le Tétrahydrofurane (THF) et uniquement dans ce solvant. De telles solutions peuvent être dialysées dans l’eau, ce qui conduit à un échange lent entre cette dernière et le THF, et l’autoassemblage du copolymère dans l’eau peut ensuite être étudié. C’est ainsi qu’ont pu être observées des nanoparticules stables dans le temps dont le comportement est sensible au pH et à la température. Les polymères synthétisés ont été caractérisés par Résonance Magnétique Nucléaire (RMN) ainsi que par spectroscopie Infra-Rouge (IR), avant et après déprotection. Les pourcentages molaires d’AA ont été déterminés par combinaison des résultats de RMN et ii de titrages conductimètriques. A l’état solide, les échantillons ont été analysés par Calorimétrie différentielle à balayage (DSC) et par Diffraction des rayons X. Les solutions colloïdales des polymères pE-co-AA ont été caractérisées par Diffusion dynamique de la lumière et par la DSC-haute sensibilité. De la microscopie électronique à transmission (TEM) a permis de visualiser la forme et la taille des nanoparticules.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Rapport de recherche présenté à la Faculté des arts et des sciences en vue de l'obtention du grade de Maîtrise en sciences économiques.
Resumo:
We complete the development of a testing ground for axioms of discrete stochastic choice. Our contribution here is to develop new posterior simulation methods for Bayesian inference, suitable for a class of prior distributions introduced by McCausland and Marley (2013). These prior distributions are joint distributions over various choice distributions over choice sets of di fferent sizes. Since choice distributions over di fferent choice sets can be mutually dependent, previous methods relying on conjugate prior distributions do not apply. We demonstrate by analyzing data from a previously reported experiment and report evidence for and against various axioms.
Resumo:
Les polymères sensibles à des stimuli ont été largement étudiés ces dernières années notamment en vue d’applications biomédicales. Ceux-ci ont la capacité de changer leurs propriétés de solubilité face à des variations de pH ou de température. Le but de cette thèse concerne la synthèse et l’étude de nouveaux diblocs composés de deux copolymères aléatoires. Les polymères ont été obtenus par polymérisation radicalaire contrôlée du type RAFT (reversible addition-fragmentation chain-transfer). Les polymères à bloc sont formés de monomères de méthacrylates et/ou d’acrylamides dont les polymères sont reconnus comme thermosensibles et sensible au pH. Premièrement, les copolymères à bloc aléatoires du type AnBm-b-ApBq ont été synthétisés à partir de N-n-propylacrylamide (nPA) et de N-ethylacrylamide (EA), respectivement A et B, par polymérisation RAFT. La cinétique de copolymérisation des poly(nPAx-co-EA1-x)-block-poly(nPAy-co-EA1-y) et leur composition ont été étudiées afin de caractériser et évaluer les propriétés physico-chimiques des copolymères à bloc aléatoires avec un faible indice de polydispersité . Leurs caractères thermosensibles ont été étudiés en solution aqueuse par spectroscopie UV-Vis, turbidimétrie et analyse de la diffusion dynamique de la lumière (DLS). Les points de trouble (CP) observés des blocs individuels et des copolymères formés démontrent des phases de transitions bien définies lors de la chauffe. Un grand nombre de macromolécules naturels démontrent des réponses aux stimuli externes tels que le pH et la température. Aussi, un troisième monomère, 2-diethylaminoethyl methacrylate (DEAEMA), a été ajouté à la synthèse pour former des copolymères à bloc , sous la forme AnBm-b-ApCq , et qui offre une double réponse (pH et température), modulable en solution. Ce type de polymère, aux multiples stimuli, de la forme poly(nPAx-co-DEAEMA1-x)-block-poly(nPAy-co-EA1-y), a lui aussi été synthétisé par polymérisation RAFT. Les résultats indiquent des copolymères à bloc aléatoires aux propriétés physico-chimiques différentes des premiers diblocs, notamment leur solubilité face aux variations de pH et de température. Enfin, le changement d’hydrophobie des copolymères a été étudié en faisant varier la longueur des séquences des blocs. Il est reconnu que la longueur relative des blocs affecte les mécanismes d’agrégation d’un copolymère amphiphile. Ainsi avec différents stimuli de pH et/ou de température, les expériences effectuées sur des copolymères à blocaléatoires de différentes longueurs montrent des comportements d’agrégation intéressants, évoluant sous différentes formes micellaires, d’agrégats et de vésicules.
Resumo:
La tâche de kinématogramme de points aléatoires est utilisée avec le paradigme de choix forcé entre deux alternatives pour étudier les prises de décisions perceptuelles. Les modèles décisionnels supposent que les indices de mouvement pour les deux alternatives sont encodés dans le cerveau. Ainsi, la différence entre ces deux signaux est accumulée jusqu’à un seuil décisionnel. Cependant, aucune étude à ce jour n’a testé cette hypothèse avec des stimuli contenant des mouvements opposés. Ce mémoire présente les résultats de deux expériences utilisant deux nouveaux stimuli avec des indices de mouvement concurrentiels. Parmi une variété de combinaisons d’indices concurrentiels, la performance des sujets dépend de la différence nette entre les deux signaux opposés. De plus, les sujets obtiennent une performance similaire avec les deux types de stimuli. Ces résultats supportent un modèle décisionnel basé sur l’accumulation des indices de mouvement net et suggèrent que le processus décisionnel peut intégrer les signaux de mouvement à partir d’une grande gamme de directions pour obtenir un percept global de mouvement.