4 resultados para ROBOCAR (Electronic computer system)

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les nouvelles technologies de l’information et des communications occupent aujourd’hui une place importante dans les entreprises, quelle que soit la taille ou le(s) domaine(s) d’activité de ces dernières. Elles participent de manière positive au développement de la vie économique. Elles sont toutefois à l’origine d’une nouvelle forme de criminalité qui menace la sécurité et l’intégrité des systèmes informatiques dans l’entreprise. Celle-ci est d’une ampleur difficile à évaluer, mais surtout difficile à maîtriser avec les dispositions législatives déjà en place, laissant par là même apparaître qu’une adaptation au niveau juridique est inévitable. Certains pays industrialisés ont ainsi décidé de mettre en place un cadre juridique adéquat pour garantir aux entreprises la sécurité de leurs systèmes informatiques. Notre étude va justement porter sur les dispositifs mis en place par deux systèmes juridiques différents. Forcés de prendre en compte une réalité nouvelle – qui n’existait pas nécessairement il y a plusieurs années –, la France et le Canada ont décidé de modifier respectivement leurs codes pénal et criminel en leur ajoutant des dispositions qui répriment de nouvelles infractions. À travers cet exposé, nous allons analyser les infractions qui portent atteinte à la sécurité du système informatique de l’entreprise à la lumière des outils juridiques mis en place. Nous allons mesurer leur degré d’efficacité face à la réalité informatique. En d’autres termes, il s’agit pour nous de déterminer si le droit va répondre ou non aux besoins de l’informatique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L'utilisation des méthodes formelles est de plus en plus courante dans le développement logiciel, et les systèmes de types sont la méthode formelle qui a le plus de succès. L'avancement des méthodes formelles présente de nouveaux défis, ainsi que de nouvelles opportunités. L'un des défis est d'assurer qu'un compilateur préserve la sémantique des programmes, de sorte que les propriétés que l'on garantit à propos de son code source s'appliquent également au code exécutable. Cette thèse présente un compilateur qui traduit un langage fonctionnel d'ordre supérieur avec polymorphisme vers un langage assembleur typé, dont la propriété principale est que la préservation des types est vérifiée de manière automatisée, à l'aide d'annotations de types sur le code du compilateur. Notre compilateur implante les transformations de code essentielles pour un langage fonctionnel d'ordre supérieur, nommément une conversion CPS, une conversion des fermetures et une génération de code. Nous présentons les détails des représentation fortement typées des langages intermédiaires, et les contraintes qu'elles imposent sur l'implantation des transformations de code. Notre objectif est de garantir la préservation des types avec un minimum d'annotations, et sans compromettre les qualités générales de modularité et de lisibilité du code du compilateur. Cet objectif est atteint en grande partie dans le traitement des fonctionnalités de base du langage (les «types simples»), contrairement au traitement du polymorphisme qui demande encore un travail substantiel pour satisfaire la vérification de type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La fibrillation auriculaire, l'arythmie la plus fréquente en clinique, affecte 2.3 millions de patients en Amérique du Nord. Pour en étudier les mécanismes et les thérapies potentielles, des modèles animaux de fibrillation auriculaire ont été développés. La cartographie électrique épicardique à haute densité est une technique expérimentale bien établie pour suivre in vivo l'activité des oreillettes en réponse à une stimulation électrique, à du remodelage, à des arythmies ou à une modulation du système nerveux autonome. Dans les régions qui ne sont pas accessibles par cartographie épicardique, la cartographie endocardique sans contact réalisée à l'aide d'un cathéter en forme de ballon pourrait apporter une description plus complète de l'activité auriculaire. Dans cette étude, une expérience chez le chien a été conçue et analysée. Une reconstruction électro-anatomique, une cartographie épicardique (103 électrodes), une cartographie endocardique sans contact (2048 électrodes virtuelles calculées à partir un cathéter en forme de ballon avec 64 canaux) et des enregistrements endocardiques avec contact direct ont été réalisés simultanément. Les systèmes d'enregistrement ont été également simulés dans un modèle mathématique d'une oreillette droite de chien. Dans les simulations et les expériences (après la suppression du nœud atrio-ventriculaire), des cartes d'activation ont été calculées pendant le rythme sinusal. La repolarisation a été évaluée en mesurant l'aire sous l'onde T auriculaire (ATa) qui est un marqueur de gradient de repolarisation. Les résultats montrent un coefficient de corrélation épicardique-endocardique de 0.8 (expérience) and 0.96 (simulation) entre les cartes d'activation, et un coefficient de corrélation de 0.57 (expérience) and 0.92 (simulation) entre les valeurs de ATa. La cartographie endocardique sans contact apparait comme un instrument expérimental utile pour extraire de l'information en dehors des régions couvertes par les plaques d'enregistrement épicardique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.