20 resultados para RNA interference (RNAi)
em Université de Montréal, Canada
Resumo:
L’inflammation est un procédé complexe qui vise l’élimination de l’agent causal de dommages tissulaires en vue de faciliter la réparation du tissu affecté. La persistance de l’agent causal ou l’incapacité à résoudre l’inflammation mène à un dérèglement homéostatique chronique qui peut avoir une incidence sur la morbidité et la mortalité. L’athérosclérose est une condition inflammatoire chronique des vaisseaux sanguins dont l’origine est multifactorielle. L’hypertension et l’état infectieux représentent respectivement des facteurs de risque classiques et émergents du développement de cette maladie. Les fondements initiaux de l’inflammation font intervenir l’immunité innée, la première ligne de défense dont disposent les cellules pour répondre à un signal de danger. Le but de cette thèse est d’examiner le rôle pro-inflammatoire d’une famille de kinases essentielles à l’immunité innée, soit celle des kinases de IkappaB (IKK) et des kinases IKK-related. Les kinases IKKalpha et IKKbeta forment le complexe IKK avec la molécule adaptatrice NEMO/IKKgamma. Ce complexe est chargé d’effectuer la phosphorylation de l’inhibiteur de NF-kappaB, IkappaBalpha, ce qui mène à sa dégradation et à la libération du facteur de transcription NF-kappaB. Nous montrons que le peptide vasoactif angiotensine II (AngII) induit l’activité phosphotransférase d’IKKbeta dans les VSMC par immunoprécipitation de NEMO puis essai kinase in vitro. Grâce à une approche ARN interférence (ARNi) dirigée contre IKK, nous montrons que cette kinase est responsable de la phosphorylation de p65/RelA. Nous montrons que le mécanisme d’induction de NF-kappaB par l’AngII est atypique, puisqu’il ne module pas IkappaBalpha, et montrons à l’aide d’inhibiteurs pharmacologiques que l’activation de p65 est indépendante des voies MEK-ERK-RSK, PI3K et de la transactivation du récepteur de l’EGF. Les kinases IKK-related Tank-binding kinase 1 (TBK1) et IKK-i sont quant à elles principalement activées suite à une infection bactérienne ou virale. Ces kinases phosphorylent directement le facteur de transcription interferon regulatory factor (IRF)-3. Nous montrons que le cytomégalovirus humain, un pathogène associé à l’athérosclérose, a la capacité d’induire l’activation de TBK1 dans les VSMC. L’usage d’ARNi dirigé contre TBK1 et IKKi montre que les 2 kinases sont impliquées dans l’activation d’IRF-3. De plus, nous montrons à l’aide d’une lignée de VSMC exprimant une version dominante négative d’IRF-3 que ce dernier est essentiel à la synthèse des chimiokines RANTES et IP-10, tel qu’analysé par RT-PCR. Par ailleurs, il a récemment été montré que les kinases IKK-related étaient étroitement liées à la transformation oncogénique, et que TBK1 était pro-angiogénique. Or, l’angiogenèse est le plus souvent modulée par la réponse hypoxique qui est d’ailleurs commune à la majorité des processus inflammatoires. Le facteur de transcription hypoxia inducible factor (HIF)-1 module l’angiogenèse, l’inflammation et la survie cellulaire. Nous montrons à l’aide de cellules Tbk1 et Ikbke -/- et d’une approche lentivirale que TBK1 est spécifiquement impliquée dans l’induction traductionnelle de HIF-1alpha en condition de stress hypoxique. L’expression de TBK1 est induite sous ces conditions, et cette kinase module la phosphorylation de ERK, RSK, Akt et TSC1. Les résultats originaux présentés dans cette thèse montrent donc que les kinases IKK et IKK-related exercent leurs actions pro-inflammatoires par des mécanismes distincts.
Resumo:
Le diabète de type 2 (DT2) est une maladie métabolique complexe causée par des facteurs génétiques mais aussi environnementaux, tels la sédentarité et le surpoids. La dysfonction de la cellule β pancréatique est maintenant reconnue comme l’élément déterminant dans le développement du DT2. Notre laboratoire s’intéresse à la sécrétion d’insuline par la cellule β en réponse aux nutriments calorigéniques et aux mécanismes qui la contrôle. Alors que la connaissance des mécanismes responsables de l’induction de la sécrétion d’insuline en réponse aux glucose et acides gras est assez avancée, les procédés d’inhibition de la sécrétion dans des contextes normaux ou pathologiques sont moins bien compris. L’objectif de la présente thèse était d’identifier quelques-uns de ces mécanismes de régulation négative de la sécrétion d’insuline dans la cellule β pancréatique, et ce en situation normale ou pathologique en lien avec le DT2. La première hypothèse testée était que l’enzyme mitochondriale hydroxyacyl-CoA déshydrogénase spécifique pour les molécules à chaîne courte (short-chain hydroxyacyl-CoA dehydrogenase, SCHAD) régule la sécrétion d’insuline induite par le glucose (SIIG) par la modulation des concentrations d’acides gras ou leur dérivés tels les acyl-CoA ou acyl-carnitine dans la cellule β. Pour ce faire, nous avons utilisé la technologie des ARN interférants (ARNi) afin de diminuer l’expression de SCHAD dans la lignée cellulaire β pancréatique INS832/13. Nous avons par la suite vérifié chez la souris DIO (diet-induced obesity) si une exposition prolongée à une diète riche en gras activerait certaines voies métaboliques et signalétiques assurant une régulation négative de la sécrétion d’insuline et contribuerait au développement du DT2. Pour ce faire, nous avons mesuré la SIIG, le métabolisme intracellulaire des lipides, la fonction mitochondriale et l’activation de certaines voies signalétiques dans les îlots de Langerhans isolés des souris normales (ND, normal diet) ou nourries à la dière riche en gras (DIO) Nos résultats suggèrent que l’enzyme SCHAD est importante dans l’atténuation de la sécrétion d’insuline induite par le glucose et les acides aminés. En effet, l’oxydation des acides gras par la protéine SCHAD préviendrait l’accumulation d’acyl-CoA ou de leurs dérivés carnitine à chaîne courtes potentialisatrices de la sécrétion d’insuline. De plus, SCHAD régule le métabolisme du glutamate par l’inhibition allostérique de l’enzyme glutamate déshydrogénase (GDH), prévenant ainsi une hyperinsulinémie causée par une sur-activité de GDH. L’étude de la dysfonction de la cellule β dans le modèle de souris DIO a démontré qu’il existe une grande hétérogénéité dans l’obésité et l’hyperglycémie développées suite à la diète riche en gras. L’orginialité de notre étude réside dans la stratification des souris DIO en deux groupes : les faibles et forts répondants à la diète (low diet responders (LDR) et high diet responder (HDR)) sur la base de leur gain de poids corporel. Nous avons mis en lumières divers mécanismes liés au métabolisme des acides gras impliqués dans la diminution de la SIIG. Une diminution du flux à travers le cycle TG/FFA accompagnée d’une augmentation de l’oxydation des acides gras et d’une accumulation intracellulaire de cholestérol contribuent à la diminution de la SIIG chez les souris DIO-HDR. De plus, l’altération de la signalisation par les voies AMPK (AMP-activated protein kinase) et PKC epsilon (protéine kinase C epsilon) pourrait expliquer certaines de ces modifications du métabolisme des îlots DIO et causer le défaut de sécrétion d’insuline. En résumé, nous avons mis en lumière des mécanismes importants pour la régulation négative de la sécrétion d’insuline dans la cellule β pancréatique saine ou en situation pathologique. Ces mécanismes pourraient permettre d’une part de limiter l’amplitude ou la durée de la sécrétion d’insuline suite à un repas chez la cellule saine, et d’autre part de préserver la fonction de la cellule β en retardant l’épuisement de celle-ci en situation pathologique. Certaines de ces voies peuvent expliquer l’altération de la sécrétion d’insuline dans le cadre du DT2 lié à l’obésité. À la lumière de nos recherches, le développement de thérapies ayant pour cible les mécanismes de régulation négative de la sécrétion d’insuline pourrait être bénéfique pour le traitement de patients diabétiques.
Resumo:
La réplication et l’assemblage du virus de l’hépatite C (VHC) sont régulés finement dans le temps et l’espace par les interactions protéiques entre le virus avec l’hôte. La compréhension de la biologie du virus ainsi que sa pathogénicité passe par les connaissances relatives aux interactions virus/hôte. Afin d’identifier ces interactions, nous avons exploité une approche d’immunoprécipitation (IP) couplée à une détection par spectrométrie de masse (MS), pour ensuite évaluer le rôle des protéines identifiées dans le cycle viral par une technique de silençage génique. Les protéines virales Core, NS2, NS3/4A, NS4B, NS5A et NS5B ont été exprimées individuellement dans les cellules humaines 293T et immunoprécipitées afin d’isoler des complexes protéiques qui ont été soumis à l’analyse MS. Ainsi, 98 protéines de l’hôte ont été identifiées avec un enrichissement significatif et illustrant une spécificité d’interaction. L’enrichissement de protéines connues dans la littérature a démontré la force de l’approche, ainsi que la validation de 6 nouvelles interactions virus/hôte. Enfin, le rôle de ces interactants sur la réplication virale a été évalué dans un criblage génomique par ARN interférant (ARNi). Deux systèmes rapporteurs de la réplication virale ont été utilisés : le système de réplicon sous-génomique (Huh7-Con1-Fluc) et le système infectieux (J6/JFH-1/p7Rluc2a), ainsi qu’un essai de toxicité cellulaire (Alamar Blue). Parmi les protéines de l’hôte interagissant avec le VHC, 28 protéines ont démontré un effet significatif sans effet de toxicité cellulaire, suggérant fortement un rôle dans la réplication du VHC. Globalement, l’étude a mené à l’identification de nouvelles interactions virus/hôte et l’identification de nouvelles cibles thérapeutiques potentielles.
Resumo:
L’ubiquitin-fold modifier (UFM1) fait partie de la classe 1 de la famille de protéine ubiquitin-like (Ubl). UFM1 et Ub ont très peu d’homologie de séquence, mais partagent des similarités remarquables au niveau de leur structure tertiaire. Tout comme l’Ub et la majorité des autres Ubls, UFM1 se lie de façon covalente à ses substrats par l’intermédiaire d’une cascade enzymatique. Il est de plus en plus fréquemment rapporté que les protéines Ubls sont impliquées dans des maladies humaines. Le gène Ufm1 est surexprimé chez des souris de type MCP développant une ischémie myocardique et dans les îlots de Langerhans de patients atteints du diabète de type 2. UFM1 et ses enzymes spécifiques, UBA5, UFL1 et UFC1, sont conservés chez les métazoaires et les plantes suggérant un rôle important pour les organismes multicellulaires. Le Caenorhabditis elegans est le modèle animal le plus simple utilisé en biologie. Sa morphologie, ses phénotypes visibles et ses lignées cellulaires ont été décrits de façon détaillée. De plus, son cycle de vie court permet de rapidement observer les effets de certains gènes sur la longévité. Ce modèle nous permet de facilement manipuler l’expression du gène Ufm1 et de mieux connaître ses fonctions. En diminuant l’expression du gène ufm-1 chez le C.elegans, par la technique de l’ARN interférence par alimentation, nous n’avons observé aucun problème morphologique grave. Les vers ressemblaient aux vers sauvages et possédaient un nombre de progéniture normal. Cependant, les vers sauvage exposés à l’ARNi d’ufm-1 vivent significativement moins longtemps que les contrôles et ce, de façon indépendante de la voie de signalisation de l’insuline/IGF. Chez le C. elegans la longévité et la résistance au stress cellulaire sont intimement liées. Nous n’avons remarqué aucun effet d’ufm-1 sur le stress thermal, osmotique ou oxydatif, mais il est requis pour la protection contre le stress protéotoxique. Il est également nécessaire au maintien de l’intégrité neuronale au cours du vieillissement des animaux. L’ensemble de nos données nous renseigne sur les fonctions putatives du gène Ufm1.
Resumo:
Les cellules souches hématopoïétiques (CSH) sont rares, mais indispensables pour soutenir la production des cellules matures du sang, un tissu en constant renouvellement. Deux caractéristiques principales les définissent; la propriété d’auto-renouvellement (AR), ou la capacité de préserver leur identité cellulaire suivant une division, et la multipotence, ce potentiel de différentiation leur permettant de générer toutes les lignée hématopoïétiques. De par leurs attributs, les CSH sont utilisée en thérapie cellulaire dans le domaine de la transplantation. Une organisation tissulaire hiérarchique est aussi préservée dans la leucémie, ou cancer du sang, une masse tumorale hétérogène devant être maintenue par une fraction de cellules au potentiel prolifératif illimité, les cellules souches leucémiques (CSL). Les travaux présentés dans ce manuscrit visent à explorer les bases moléculaires de l’AR, encore mal définies. Certains membres de la famille des facteurs de transcription à homéodomaine HOX sont impliqués dans la régulation de l’hématopoïèse normale, et leur dérégulation peut contribuer à la transformation leucémique. En particulier, la surexpression du gène Hoxb4 dans les CSH influence leur destin cellulaire, favorisant des divisions d’auto-renouvellement et leur expansion en culture et in vivo. En général, les CSH s’épuisent rapidement lorsque maintenue hors de leur niche ex vivo. Différents facteurs interagissent avec les HOX et modulent leur liaison à l’ADN, dont la famille des protéines TALE (Three Amino acid Loop Extension), comme MEIS1 et PBX1. En utilisant une stratégie de surexpression combinée de Hoxb4 et d’un anti-sens de Pbx1 dans les CSH, générant ainsi des cellules Hoxb4hiPbx1lo, il est possible de majorer encore d’avantage leur potentiel d’AR et leur expansion in vitro. Les CSH Hoxb4hiPbx1lo demeurent fonctionnellement intactes malgré une modulation extrême de leur destin cellulaire en culture. Les niveaux d’expressions de facteurs nucléaires, seules ou en combinaison, peuvent donc s’avérer des déterminants majeurs du destin des CSH. Afin d’identifier d’autres facteurs nucléaires potentiellement impliqués dans le processus d’AR des CSH, une stratégie permettant d’évaluer simultanément plusieurs gènes candidats a été élaborée. Les progrès réalisés en termes de purification des CSH et de leur culture en micro-puits ont facilité la mise au point d’un crible en RNAi (interférence de l’ARN), mesurant l’impact fonctionnel d’une diminution des niveaux de transcrits d’un gène cible sur l’activité des CSH. Les candidats sélectionnés pour cette étude font partie du grand groupe des modificateurs de la chromatine, plus précisément la famille des histones déméthylases (HDM) contenant un domaine catalytique Jumonji. Ce choix repose sur la fonction régulatrice de plusieurs membres de complexes méthyl-transférases sur l’AR des CSH, dont l’histone méthyl-transférases MLL (Mixed Lineage Leukemia). Cette stratégie a aussi été utilisée dans le laboratoire pour étudier le rôle de facteurs d’asymétrie sur le destin des CSH, en collaboration. Ces études ont permis d’identifier à la fois des régulateurs positifs et négatifs de l’activité des CSH. Entre autre, une diminution de l’expression du gène codant pour JARID1B, une HDM de la lysine 4 de l’histone H3 (H3K4), augmente l’activité des CSH et s’accompagne d’une activation des gènes Hox. En conclusion, divers déterminants nucléaires, dont les facteurs de transcription et les modificateurs de la chromatine peuvent influencer le destin des CSH. Les mécanismes sous-jacents et l’identification d’autres modulateurs de l’AR demeurent des voies à explorer, pouvant contribuer éventuellement aux stratégies d’expansion des CSH ex vivo, et l’identification de cibles thérapeutiques contre les CSL. Mots-clés : cellules souches hématopoïétiques, Hoxb4, Pbx1, auto-renouvellement, histone déméthylases, RNAi
Resumo:
La division cellulaire asymétrique est un processus crucial dans le développement des organismes multicellulaires puisqu’elle permet la génération de la diversité cellulaire. Les cellules qui se divisent de façon asymétrique doivent tout d’abord se polariser et correctement orienter leur fuseau mitotique pour ségréger des déterminants cellulaires en deux entités distinctes. L’embryon du nématode C. elegans est un modèle robuste et largement utilisé pour étudier la division cellulaire asymétrique. Dans cet embryon, le point d'entrée du spermatozoïde détermine l'axe de polarité antéro-postérieur. Suite à la fécondation, le cortex embryonnaire est uniformément contractile et un complexe conservé formé des protéines PAR-3, PAR-6 et PKC-3 (nommé complexe PAR-3 ci-dessous) est localisé sur l'ensemble du cortex. La complétion de la méiose maternelle induit une relaxation corticale au postétieur et un flux cortical vers l’antérieur de l’embryon. Ces contractions corticales asymétriques mènent à la formation d'un domaine antérieur contenant le complexe PAR-3, tandis que le cortex postérieur, dont le complexe PAR-3 s’est délocalisé, est enrichi avec les protéines PAR-2 et PAR-1. Par conséquent, les domaines formés par les protéines PAR définissent un pôle antérieur et un pôle postérieur dans l'embryon suite au remodelage du cytosquelette. Les protéines PAR-4 et PAR-5 restent localisées de façon uniforme dans l'embryon. Curieusement, les protéines PAR exercent une régulation par rétroaction sur la contractilité corticale. Il a été montré qu’une des protéines PAR récemment identifiée, PAR-5, est orthologue à la protéine adaptatrice 14-3-3 et joue un rôle important dans la contractilité corticale. En dépit de son rôle central dans la contractilité corticale et le processus de polarisation cellulaire, le mécanisme par lequel PAR-5 régule la contractilité corticale n’est pas bien compris. Le but de ce projet est de mieux comprendre comment PAR-5 et ses interacteurs contrôlent la régulation des contractions corticales et, de ce fait, la polarité cellulaire. Dans un essai de capture de la protéine GST (GST pull-down), nous avons identifié plusieurs nouveaux interacteurs de PAR-5. Parmi ceux-ci, nous avons trouvé CAP-2 (protéine de coiffage de l'actine), qui a été identifiée dans des éxpériences de capture de 14-3-3 dans trois systèmes modèles différents. CAP-2 est un hétérodimère des protéines CAP, qui sont impliquées dans la régulation de l'actine. Nous avons trouvé que la déplétion des protéines CAP par interférence à l’ARN dans des vers de type sauvage mène à une augmentation létalité embryonnaire, ce qui suggère que ces protéines jouent un rôle important dans le développement embryonnaire. L'imagerie en temps réel d'embryons déplétés pour les protéines CAP montre qu’ils ont une diminution des contractions corticales avec un sillon de pseudoclivage mois stable, suggérant un défaut dans la régulation du cytosquelette d'actine-myosine. Ceci a également été confirmé par la diminution de la vitesse et du nombre de foci de NMY-2::GFP. En outre, ces embryons montrent une légère diminution de la taille du croissant cortical de PAR-2 lors de la phase d’établissement de la polarité. Les embryons déplétés en CAP-2 montrent également un retard dans la progression du cycle cellulaire, mais le lien entre ce phénotype et la régulation des contractions corticales reste à être précisé. La caractérisation des protéines CAP, des régulateurs du remodelage du cytosquelette, permettra d'améliorer notre compréhension des mécanismes qui sous-tendent l'établissement et le maintien de la polarité cellulaire, et donc la division cellulaire asymétrique.
Resumo:
Différentes translocations génomiques sont fréquemment associées à l'apparition de leucémies myéloïdes aiguës (LMA). Ces translocations génomiques résultent de l’assemblage de deux gènes conduisant à la production d'une protéine de fusion. C'est le cas de la translocation t (3; 5) (q25.1; q34) impliquant le suppresseur tumoral NPM et l'oncogène MLF1 donnant naissance à la protéine de fusion NPM-MLF1. Généralement, les gènes impliqués dans ces translocations contrôlent la croissance cellulaire, la différenciation ou la survie cellulaire. Cependant, pour NPM-MLF1 les causes du gain ou de la perte de fonction associée à la translocation demeurent inconnues car nous ne savons pas comment cette translocation peut favoriser ou participer à l'avènement de la LMA. Le but de ce travail est d’analyser le rôle de NPM-MLF1 dans le cancer et d’examiner comment son activité contribue à la leucémie en faisant des études d’interactions protéine/protéine. En effet, l’étude de la fonction d’une protéine implique souvent de connaître ses partenaires d’interactions. Pour ce faire, la technique de double hybride dans la souche de levure AH109 a été utilisée. Tout d’abord, les ADN complémentaires (ADNc) de MLF1, NPM1 et de NPM-MLF1, MLF1-Like (une partie de MLF1 de l’acide aminé 94 à 157) normaux et mutés du domaine MTG8-Like constitué des acides aminés (a.a.) 151 à 164 de MLF1 (excepté NPM) ont été clonés dans un vecteur d'expression de levure pGBKT7. Les ADNc de GFI-1, mSin3A, PLZF, HDAC1 et HDAC3 ont été clonés dans le plasmide pGADT7 de façon à créer des protéines de fusion synthétiques avec le domaine de liaison à l'ADN et de trans-activation de la protéine GAL4. Le plasmide pGBKT7 possède un gène TRP1 et pGADT7 un gène LEU2 qui permettent la sélection des clones insérés dans la levure. Aussi, le pGBKT7 a un épitope c-myc et pGADT7 un épitope HA qui permet de voir l’expression des protéines par buvardage de type Western. Après la transformation des levures les interactions protéine/protéine ont été observées en vérifiant l’expression des gènes rapporteurs HIS3, LacZ, MEL1, ADE2 de la levure en utilisant des milieux de sélection YPD/-Leu/-Trp, YPD/-Leu/-Trp/-His, YPD/-Leu/-Trp/-His/-Ade, YPD/-Leu/-Trp/+ X-Gal, YPD/-Leu/-Trp/ + X-α-Gal. Ensuite, les interactions trouvées par double-hybride ont été vérifiées dans les cellules érythroleucémiques K562 par immuno-précipitation (IP) de protéines suivies de buvardages Westerns avec les anticorps appropriés. NPM-MLF1, MLF1, MTG8, MLF1-Like surexprimés dans les cellules K562 ont été clonés dans le plasmide pOZ-FH-N. pOZ-FH-N possède un récepteur IL-2 qui permet de sélectionner les cellules qui l’expriment ainsi qu’un tag Flag-HA qui permet de voir l’expression des protéines par buvardage-Western. Les résultats du double-hybride suggèrent une interaction faible de NPM-MLF1 avec HDAC1, HDAC3 et mSin3A ainsi qu’une interaction qui semble plus évidente entre NPM-MLF1 et PLZF, GFI-1. NPM interagit avec GFI-1 et mSin3A. Aussi, MLF1 et MLF1-Like interagissent avec HDAC1, HDAC3, GFI-1, PLZF mais pas avec mSin3A. Les IP suggèrent que NPM-MLF1 interagit avec HDAC1, HDAC3, mSin3A et PLZF. MLF1 et MLF1-Like interagissent avec HDAC1, HDAC3 et mSin3A. L’interaction de NPM-MLF1 avec GFI-1, MLF1 et MLF1-Like avec PLZF et GFI-1 n’a pas encore été vérifiée par IP. Ainsi, nos observations permettent de suggérer que NPM-MF1, MLF1 et NPM pourraient jouer un rôle dans la transcription et la régulation de l’expression de certains gènes importants dans l’hématopoïèse et une variété de processus cellulaires parce qu’ils interagissent avec différents corépresseurs. En déterminant les partenaires protéiques de MLF1, NPM et NPM-MLF1, leurs fonctions et comment NPM-MLF1 influence et modifie le fonctionnement cellulaire normal; il sera possible de renverser le processus de LMA favorisé par la t (3; 5) NPM-MLF1 par la technologie d’interférence à l’ARN.
Resumo:
Le facteur de l’ADP-ribosylation 6 (ARF6) et Rac1 sont des petites protéines liant le GTP qui régulent plusieurs voies de signalisation comprenant le trafic de vésicules, la modification des lipides membranaires et la réorganisation du cytosquelette d’actine. Cependant, les mécanismes moléculaires par lesquels ARF6 et Rac1 agissent de concert afin de contrôler ces différents processus cellulaires restent méconnus. Dans cette étude, nous montrons que, dans les cellules HEK293, ARF6 et Rac1 sont retrouvées en complexe suite à la stimulation du récepteur à l’angiotensine. Des expériences réalisées in vitro nous indiquent que ces deux GTPases interagissent ensemble directement, et que ARF6 s’associe préférentiellement avec la forme inactive de Rac1. L’inhibition de l’expression de ARF6 par interférence à l’ARN entraîne une activation marquée en cellule de Rac1 via le facteur PIX, indépendamment de la stimulation d’un récepteur, ce qui provoque la migration non contrôlée des cellules. Les arrestines, protéines de régulation de la désensibilisation des récepteurs couplés aux protéines G, servent de protéines d’échafaudage pour Rac1 et ARF6, en interagissant directement avec les GTPases et en augmentant leur association stimulée par l’angiotensine. De plus, les arrestines permettent l’activation, en s’en dissociant, de la MAP Kinase p38 qui régule l’activité de ARF6 et son interaction précoce avec les arrestines. Mis ensemble, ces résultats montrent que les arrestines contrôlent l’activité de ARF6, en influençant p38. ARF6 joue un rôle inhibiteur sur l’activation basale de Rac1 pour permettre ensuite son recrutement et son activation dépendante de l’angiotensine. Cette étude nous a permis de préciser le mode de régulation mis en jeu dans l’initiation de la migration cellulaire, suite à l’activation d’un récepteur couplé aux protéines G. Par le fait même, nous avons identifié certains des acteurs impliqués dans ce processus, offrant ainsi de nouvelles cibles pour le traitement des déséquilibres pathophysiologiques de la migration cellulaire.
Resumo:
ARF6 et ARF1 sont des petites GTPases de la famille des ARF(s) qui régulent plusieurs voies de signalisation comprenant, la formation et le mouvement des vésicules, la transformation des lipides membranaires et la réorganisation du cytosquelette d’actine. À ce jour, le rôle de la protéine ARF6 et de la protéine ARF1 dans la signalisation des récepteurs couplés aux protéines G (RCPG) et des récepteurs à activité tyrosine kinase (RTK) dans les cellules endothéliales est encore très peu étudié. Le but de cette étude a été de caractériser le rôle de la protéine ARF6 dans la migration des cellules endothéliales induite par l’endothéline-1, ainsi que le rôle de la protéine ARF1 dans la sécrétion du monoxyde d’azote (NO) stimulées par le VEGF. Dans cette étude, nous montrons qu’ARF6 est essentielle à la migration des cellules endothéliales induite par l’endotheline-1. L’inhibition de l’expression d’ARF6 par interférence à l’ARN entraîne une activation marquée de la kinase FAK et son association constitutive avec Src. Par ailleurs, cette inhibition affecte l’association entre GIT1 et la kinase FAK. Ceci se traduit par une inhibition du désassemblage des contacts focaux et une augmentation de l’adhésion cellulaire menant à une diminution de la motilité. De plus, nos résultats montrent que la protéine ARF1 est essentielle à l’activation d’eNOS et à la sécrétion du NO suite à l’activation du VEGFR2 dans les cellules endothéliales BAEC. En effet, l’inhibition de l’expression d’ARF1 par interférence à l’ARN entraîne une inhibition du recrutement de la kinase Akt à la membrane plasmique et une inhibition de son activation induite par le VEGF. L’inhibition de l’activation de la kinase Akt par le VEGF conduit à une inhibition de l’activation de eNOS et de la sécrétion du NO. Dans l’ensemble, nos résultats montrent que les protéines ARF6 et ARF1 sont essentielles à la signalisation de l’ETB et du VEGFR2 pour les processus menant à la migration cellulaire et à la sécrétion du NO respectivement, deux évènements essentiels à l’angiogenèse.
Resumo:
Le diabète est une maladie métabolique qui se caractérise par une résistance à l’insuline des tissus périphériques et par une incapacité des cellules β pancréatiques à sécréter les niveaux d’insuline appropriés afin de compenser pour cette résistance. Pour mieux comprendre les mécanismes déficients dans les cellules β des patients diabétiques, il est nécessaire de comprendre et de définir les mécanismes impliqués dans le contrôle de la sécrétion d’insuline en réponse au glucose. Dans les cellules β pancréatiques, le métabolisme du glucose conduit à la production de facteurs de couplage métabolique, comme l’ATP, nécessaires à la régulation de l’exocytose des vésicules d’insuline. Le mécanisme par lequel la production de l’ATP par le métabolisme oxydatif du glucose déclenche l’exocytose des vésicules d’insuline est bien décrit dans la littérature. Cependant, il ne peut à lui seul réguler adéquatement la sécrétion d’insuline. Le malonyl-CoA et le NADPH sont deux autres facteurs de couplage métaboliques qui ont été suggérés afin de relier le métabolisme du glucose à la régulation de la sécrétion d’insuline. Les mécanismes impliqués demeurent cependant à être caractérisés. Le but de la présente thèse était de déterminer l’implication des navettes du pyruvate, découlant du métabolisme mitochondrial du glucose, dans la régulation de la sécrétion d’insuline. Dans les cellules β, les navettes du pyruvate découlent de la combinaison des processus d’anaplérose et de cataplérose et permettent la transduction des signaux métaboliques provenant du métabolisme du glucose. Dans une première étude, nous nous sommes intéressés au rôle de la navette pyruvate/citrate dans la régulation de la sécrétion d’insuline en réponse au glucose, puisque cette navette conduit à la production dans le cytoplasme de deux facteurs de couplage métabolique, soit le malonyl-CoA et le NADPH. De plus, la navette pyruvate/citrate favorise le flux métabolique à travers la glycolyse en réoxydation le NADH. Une étude effectuée précédemment dans notre laboratoire avait suggéré la présence de cette navette dans les cellules β pancréatique. Afin de tester notre hypothèse, nous avons ciblé trois étapes de cette navette dans la lignée cellulaire β pancréatique INS 832/13, soit la sortie du citrate de la mitochondrie et l’activité de l’ATP-citrate lyase (ACL) et l’enzyme malique (MEc), deux enzymes clés de la navette pyruvate/citrate. L’inhibition de chacune de ces étapes par l’utilisation d’un inhibiteur pharmacologique ou de la technologie des ARN interférant a corrélé avec une réduction significative de la sécrétion d’insuline en réponse au glucose. Les résultats obtenus suggèrent que la navette pyruvate/citrate joue un rôle critique dans la régulation de la sécrétion d’insuline en réponse au glucose. Parallèlement à notre étude, deux autres groupes de recherche ont suggéré que les navettes pyruvate/malate et pyruvate/isocitrate/α-cétoglutarate étaient aussi importantes pour la sécrétion d’insuline en réponse au glucose. Ainsi, trois navettes découlant du métabolisme mitochondrial du glucose pourraient être impliquées dans le contrôle de la sécrétion d’insuline. Le point commun de ces trois navettes est la production dans le cytoplasme du NADPH, un facteur de couplage métabolique possiblement très important pour la sécrétion d’insuline. Dans les navettes pyruvate/malate et pyruvate/citrate, le NADPH est formé par MEc, alors que l’isocitrate déshydrogénase (IDHc) est responsable de la production du NADPH dans la navette pyruvate/isocitrate/α-cétoglutarate. Dans notre première étude, nous avions démontré l’importance de l’expression de ME pour la sécrétion adéquate d’insuline en réponse au glucose. Dans notre deuxième étude, nous avons testé l’implication de IDHc dans les mécanismes de régulation de la sécrétion d’insuline en réponse au glucose. La diminution de l’expression de IDHc dans les INS 832/13 a stimulé la sécrétion d’insuline en réponse au glucose par un mécanisme indépendant de la production de l’ATP par le métabolisme oxydatif du glucose. Ce résultat a ensuite été confirmé dans les cellules dispersées des îlots pancréatiques de rat. Nous avons aussi observé dans notre modèle que l’incorporation du glucose en acides gras était augmentée, suggérant que la diminution de l’activité de IDHc favorise la redirection du métabolisme de l’isocitrate à travers la navette pyruvate/citrate. Un mécanisme de compensation à travers la navette pyruvate/citrate pourrait ainsi expliquer la stimulation de la sécrétion d’insuline observée en réponse à la diminution de l’expression de IDHc. Les travaux effectués dans cette deuxième étude remettent en question l’implication de l’activité de IDHc, et de la navette pyruvate/isocitrate/α-cétoglutarate, dans la transduction des signaux métaboliques reliant le métabolisme du glucose à la sécrétion d’insuline. La navette pyruvate/citrate est la seule des navettes du pyruvate à conduire à la production du malonyl-CoA dans le cytoplasme des cellules β. Le malonyl-CoA régule le métabolisme des acides gras en inhibant la carnitine palmitoyl transférase 1, l’enzyme limitante dans l’oxydation des acides gras. Ainsi, l’élévation des niveaux de malonyl-CoA en réponse au glucose entraîne une redirection du métabolisme des acides gras vers les processus d’estérification puis de lipolyse. Plus précisément, les acides gras sont métabolisés à travers le cycle des triglycérides/acides gras libres (qui combinent les voies métaboliques d’estérification et de lipolyse), afin de produire des molécules lipidiques signalétiques nécessaires à la modulation de la sécrétion d’insuline. Des études effectuées précédemment dans notre laboratoire ont démontré que l’activité lipolytique de HSL (de l’anglais hormone-sensitive lipase) était importante, mais non suffisante, pour la régulation de la sécrétion d’insuline. Dans une étude complémentaire, nous nous sommes intéressés au rôle d’une autre lipase, soit ATGL (de l’anglais adipose triglyceride lipase), dans la régulation de la sécrétion d’insuline en réponse au glucose et aux acides gras. Nous avons démontré que ATGL est exprimé dans les cellules β pancréatiques et que son activité contribue significativement à la lipolyse. Une réduction de son expression dans les cellules INS 832/13 par RNA interférant ou son absence dans les îlots pancréatiques de souris déficientes en ATGL a conduit à une réduction de la sécrétion d’insuline en réponse au glucose en présence ou en absence d’acides gras. Ces résultats appuient l’hypothèse que la lipolyse est une composante importante de la régulation de la sécrétion d’insuline dans les cellules β pancréatiques. En conclusion, les résultats obtenus dans cette thèse suggèrent que la navette pyruvate/citrate est importante pour la régulation de la sécrétion d’insuline en réponse au glucose. Ce mécanisme impliquerait la production du NADPH et du malonyl-CoA dans le cytoplasme en fonction du métabolisme du glucose. Cependant, nos travaux remettent en question l’implication de la navette pyruvate/isocitrate/α-cétoglutarate dans la régulation de la sécrétion d’insuline. Le rôle exact de IDHc dans ce processus demeure cependant à être déterminé. Finalement, nos travaux ont aussi démontré un rôle pour ATGL et la lipolyse dans les mécanismes de couplage métabolique régulant la sécrétion d’insuline.
Resumo:
L’apoptose est une forme de mort cellulaire essentielle au développement et au maintien de l’homéostase chez les animaux multicellulaires. La machinerie apoptotiq ue requiert la participation des caspases, des protéases conservées dans l’évolution et celle des organelles cytoplasmiques. Les lysosomes subissent des ruptures partielles, labilisation de la membrane lysosomale (LML), qui entraînent l’activation des cathepsines dans le cytoplasme de cellules cancéreuses humaines en apoptose induite par la camptothecin (CPT), incluant les histiocytes humains U-937. Ces modifications lysosomales se manifestent tôt durant l’activation de l’apoptose, concomitamment avec la perméabilisation de la mitochondrie et l’activation des caspases. Une étude protéomique quantitative et comparative a permis d’identifier des changements précoces dans l’expression/localisation de protéines lysosomales de cellules U-937 en apoptose. Lors de deux expériences indépendantes, sur plus de 538 protéines lysosomales identifiées et quantifiées grâce au marquage isobarique iTRAQ et LC-ESIMS/ MS, 18 protéines augmentent et 9 diminuent dans les lysosomes purifiés de cellules en cours d’apoptose comparativement aux cellules contrôles. Les candidats validés par immuno-buvardage et microscopie confocale incluent le stérol-4-alpha-carboxylate 3- déhydrogénase, le prosaposin et la protéine kinase C delta (PKC-d). Des expériences fonctionnelles ont démontrées que la translocation de PKC-d aux lysosomes est requise pour la LML puisque la réduction de son expression par ARN interférents ou l’inhibition de son activité à l’aide du rottlerin empêche la LML lors de l’apoptose induite par la CPT. La translocation de PKC-d aux lysosomes conduit à la phosphorylation et l’activation de la sphingomyelinase acide lysosomale (ASM), et à l’accroissement subséquent du contenu en céramide (CER) à la membrane lysosomale. Cette accumulation de CER endogène aux lysosomes est un évènement critique pour la LML induite par la CPT car l’inhibition de l’activité de PKC-d ou de ASM diminue la formation de CER et la LML.Ces résultats révèlent un nouveau mécanisme par lequel la PKC-d active l’ASM qui conduit à son tour à l’accumulation de CER à la membrane lysosomale et déclenche la LML et l’activation de la voie lysosomale de l’apoptose induite par la CPT. En somme, ce mécanisme confirme l’importance du métabolisme des sphingolipides dans l’activation de la voie lysosomale de l’apoptose.
Resumo:
HIV-1 viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by a mechanism involving the activation of the DNA damage sensor ATR. We and others recently showed that Vpr performs this function by subverting the activity of the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. Vpr could thus act as a connector between the E3 ligase and an unknown cellular factor whose ubiquitination would induce G2 arrest. While attractive, this model is solely based on the indirect observation that some mutants of Vpr retain their interaction with the E3 ligase but fail to induce G2 arrest. Using a tandem affinity purification approach, we observed that Vpr interacts with ubiquitinated cellular proteins and that this association requires the recruitment of an active E3 ligase given that depletion of VPRBP by RNA interference or overexpression of a dominant-negative mutant of CUL4A decreased this association. Importantly, G2-arrest-defective mutants of Vpr in the C-terminal putative substrate-interacting domain displayed decreased association with ubiquitinated proteins. We also found that inhibition of proteasomal activity increased this association and that the ubiquitin chains were at least in part constituted of classical K48 linkages. Interestingly, inhibition of K48 polyubiquitination specifically impaired Vpr-induced phosphorylation of H2AX, an early target of ATR, but did not affect UV-induced H2AX phosphorylation. Overall, our results provide direct evidence that association of Vpr with the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase induces the K48-linked polyubiquitination of yet-unknown cellular proteins resulting in their proteasomal degradation and ultimately leading to activation of ATR and G2 arrest.
Resumo:
Les facteurs d’ADP-ribosylation (ARFs) sont des petites GTPases impliquées dans le transport vésiculaire, la synthèse des lipides membranaires et la réorganisation du cytosquelette d’actine. Les isoformes 1 (ARF1) et 6 (ARF6) sont les plus étudiées. ARF1 est connue pour être distribuée à l’appareil de Golgi, alors qu’ARF6 est confinée principalement à la membrane plasmique. Récemment, il a été démontré qu’ARF6 est hautement exprimée et activée dans plusieurs cellules de cancer du sein invasif et que celle-ci contrôle les processus de migration et d’invasion. Cependant, le rôle d’ARF1 dans ces processus biologiques impliqués dans la formation de métastases du cancer du sein demeure méconnu. Dans la présente étude, nous avons utilisé comme modèle d’étude pour ARF1 les MDA-MB-231, une lignée de cellules invasives du cancer du sein exprimant de haut niveau de récepteurs au facteur de croissance épidermique (EGFR). Afin d’évaluer le rôle d’ARF1 dans la migration, dans la transition épithéliale mésenchymateuse (EMT) et dans la prolifération cellulaire, nous avons procédé à deux types d’approches expérimentales, soit l’inhibition de l’expression endogène d’ARF1 par l’interférence à l’ARN de même que la surexpression de formes mutantes dominante négative (ARF1T31N) et constitutivement active d’ARF1 (ARF1Q71L), qui miment les formes inactive et active de la GTPase, respectivement. De manière intéressante, la suppression d’ARF1 et la surexpression de la forme inactive d’ARF1 induisent l’arrêt de la migration et de la prolifération des MDA-MB-231 de manière dépendante à l’activation de l’EGFR et ce, en bloquant l’activation de la voie PI3Kinase. De plus, nous démontrons qu’ARF1, de même que les ARF GEFs Cytohésine-1 et Cytohésine-2, contribuent au phénotype invasif des cellules tumorales de cancer du sein. Dans les mêmes approches expérimentales, nous montrons que l’inactivation d’ARF1 dans les MDA-MB-231 déclenche un arrêt de croissance irréversible associé à l’induction de la sénescence et ce, en régulant la fonction de la protéine du rétinoblastome pRb. Enfin, cette étude a permis de mettre en évidence le rôle physiologique d’ARF1 dans les processus de migration et de prolifération cellulaire, deux événements biologiques responsables de la progression du cancer du sein.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Dans la cellule, chaque ARNm se doit d’être régulé finement au niveau transcriptionnel, bien entendu, mais également au niveau de sa traduction, de sa dégradation ainsi que de sa localisation intracellulaire, et ce, afin de permettre l’expression de chaque produit protéique au moment et à l’endroit précis où son action est requise. Lorsqu’un mécanisme physiologique est mis de l’avant dans la cellule, il arrive souvent que plusieurs ARNm se doivent d’être régulés simultanément. L’un des moyens permettant d’orchestrer un tel processus est de réguler l’action d’une protéine commune associée à chacun de ces ARNm, via un mécanisme post-traductionnel par exemple. Ainsi l’expression d’un groupe précis d’ARNm peut être régulée finement dans le temps et dans l’espace selon les facteurs protéiques auxquels il est associé. Dans l’optique d’étudier certains de ces complexes ribonucléoprotéiques (mRNP), nous nous sommes intéressés aux isoformes et paralogues de Staufen, une protéine à domaine de liaison à l’ARN double-brin (dsRBD) impliquée dans de nombreux aspects de la régulation post-transcriptionnelle, tels la dégradation, la traduction ou encore la localisation d’ARNm. Chez la drosophile, un seul gène Staufen est exprimé alors que chez les mammifères, il existe deux paralogues de la protéine, soit Stau1 et Stau2, tous deux possédant divers isoformes produits suite à l’épissage alternatif de leur gène. Stau1 et Stau2 sont identiques à 50%. Les deux isoformes de Stau2, Stau259 et Stau262 ne diffèrent qu’en leur extrémité N-terminale. En effet, alors que Stau259 arbore un dsRBD1 tronqué, celui de Stau262 est complet. Ces observations introduisent une problématique très intéressante à laquelle nous nous sommes attaqué : ces différentes protéines, quoique très semblables, font-elles partie de complexes ribonucléoprotéiques distincts ayant des fonctions propres à chacun ou, au contraire, vu cette similarité de séquence, travaillent-elles de concert au sein des mêmes complexes ribonucléoprotéiques? Afin d’adresser cette question, nous avons entrepris d’isoler, à partir de cellules HEK293T, les différents complexes de Stau1 et Stau2 par la technique d’immunoprécipitation. Nous avons isolé les ARNm associés à chaque protéine, les avons identifiés grâce aux micropuces d’ADN et avons confirmé nos résultats par RT-PCR. Malgré la présence d’une population commune d’ARNm associée à Stau1 et Stau2, la majorité des transcrits identifiés furent spécifiques à chaque orthologue. Cependant, nous avons remarqué que les diverses populations d’ARNm participaient aux mêmes mécanismes de régulation, ce qui suggère que ces deux protéines possèdent des rôles complémentaires dans la mise en œuvre de divers phénomènes cellulaires. Au contraire, les transcrits associés à Stau259 et Stau262 sont davantage similaires, indiquant que celles-ci auraient des fonctions plutôt semblables. Ces résultats sont très intéressants, car pour la première fois, nous avons identifié des populations d’ARNm associées aux isoformes Stau155, Stau259 et Stau262. De plus, nous les avons analysées en parallèle afin d’en faire ressortir les populations spécifiques à chacune de ces protéines. Ensuite, connaissant l’importance de Stau2 dans le transport dendritique d’ARNm, nous avons cherché à caractériser les complexes ribonucléoprotéiques neuronaux associés à celle-ci. Dans un premier temps et à l’aide de la technique d’immunoprécipitation, nous avons identifié une population d’ARNm neuronaux associés à Stau2. Plus de 1700 ARNm montraient une présence d’au moins huit fois supérieure dans le précipité obtenu avec l’anticorps anti-Stau2 par rapport à celui obtenu avec le sérum pré-immun. Ces ARNm codent pour des protéines impliquées dans des processus de modifications post-traductionnelles, de traduction, de transport intracellulaire et de métabolisme de l’ARN. De façon intéressante, cette population d’ARNm isolée du cerveau de rat est relativement différente de celle caractérisée des cellules humaines HEK293T. Ceci suggère que la spécificité d’association Stau2-ARNm peut diffèrer d’un tissu à un autre. Dans un deuxième temps, nous avons isolé les protéines présentes dans les complexes ribonucléoprotéiques obtenus de cerveaux de rat et les avons identifiées par analyse en spectrométrie de masse. De cette façon, nous avons identifié au sein des particules de Stau2 des protéines liant l’ARN (PABPC1, hnRNPH1, YB1, hsc70), des protéines du cytosquelette (α- et β-tubuline), de même que la protéine peu caractérisée RUFY3. En poussant davantage la caractérisation, nous avons établi que YB1 et PABPC1 étaient associées à Stau2 grâce à la présence de l’ARN, alors que la protéine hsc70, au contraire, interagissait directement avec celle-ci. Enfin, cette dernière association semble être modulable par l’action de l’ATP. Ce résultat offre de nombreuses possibilités quant à la régulation de la fonction de Stau2 et/ou de son mRNP. Entre autres, cette étude suggère un mécanisme de régulation de la traduction au sein de ces particules. Pour faire suite à la caractérisation des mRNP de Stau, nous avons voulu déterminer au niveau neurophysiologique l’importance de ceux-ci. Comme l’étude de Stau2 avait déjà été entreprise préalablement par un autre laboratoire, nous avons décidé de concentrer notre étude sur le rôle de Stau1. Ainsi, nous avons démontré que celle-ci était nécessaire à la mise en place d’une forme de plasticité synaptique à long terme, la forme tardive de potentialisation à long terme ou L-LTP, dépendante de la transcription et de l’activité des récepteurs NMDA. La transmission de base, de même que la faculté de ces épines à faire de la E-LTP, la forme précoce de potentialisation à long terme, et la dépression à long terme ou LTD sont conservées. Ceci indique que les épines conservent la capacité d’être modulées. Ainsi, l’inhibition de la L-LTP, suite à la sous-expression de Stau1, n’est pas simplement due à la perte d’éléments fonctionnels, mais réside plutôt dans l’incapacité de ceux-ci à induire les changements synaptiques spécifiquement nécessaires à la mise en place de la L-LTP. De plus, au niveau synaptique, la sous-expression de Stau1 réduit à la fois l’amplitude et la fréquence des mEPSC. Ces résultats concordent avec l’observation que la sous-expression de Stau1 augmente significativement la proportion d’épines allongées et filopodales, des épines formant des synapses dites silencieuses. Par le fait même, elle diminue le nombre d’épines fonctionnelles, de forme dite normale. Ainsi, nous avons été en mesure de démontrer que l’absence, au niveau neuronal, de la protéine Stau1 induisait un déficit probable dans la localisation et/ou la traduction d’ARNm responsable de la restructuration de l’épine et de facteurs nécessaires à la mise en place de la L-LTP. En conclusion, nous avons participé à lever le voile sur la composition et l’importance des complexes ribonucléoprotéiques de Stau1 et Stau2. Nous avons identifié des populations distinctes et communes d’ARNm associées aux différents isoformes de Stau, à partir des mRNP présents au sein des cellules HEK293. De plus, nous avons réussi à mettre à l’avant plan certaines composantes des mRNP neuronaux de Stau2, dont un partenaire protéique direct, hsc70, partenaire dont l’association est modulable par l’action de l’ATP, ainsi qu’une population neuronale de transcrits d’ARNm. Enfin, nous avons mis en lumière l’importance de Stau1 dans la morphologie des épines dendritiques ainsi que dans le phénomène de la plasticité synaptique.