8 resultados para REPRODUCING KERNEL HILBERT SPACES
em Université de Montréal, Canada
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Dans ce travail, nous définissons des objets composés de disques complexes marqués reliés entre eux par des segments de droite munis d’une longueur. Nous construisons deux séries d’espaces de module de ces objets appelés clus- ters, une qui sera dite non symétrique, la version ⊗, et l’autre qui est dite symétrique, la version •. Cette construction permet des choix de perturba- tions pour deux versions correspondantes des trajectoires de Floer introduites par Cornea et Lalonde ([CL]). Ces choix devraient fournir une nouvelle option pour la description géométrique des structures A∞ et L∞ obstruées étudiées par Fukaya, Oh, Ohta et Ono ([FOOO2],[FOOO]) et Cho ([Cho]). Dans le cas où L ⊂ (M, ω) est une sous-variété lagrangienne Pin± mono- tone avec nombre de Maslov ≥ 2, nous définissons une structure d’algèbre A∞ sur les points critiques d’une fonction de Morse générique sur L. Cette struc- ture est présentée comme une extension du complexe des perles de Oh ([Oh]) muni de son produit quantique, plus récemment étudié par Biran et Cornea ([BC]). Plus généralement, nous décrivons une version géométrique d’une catégorie de Fukaya avec seul objet L qui se veut alternative à la description (relative) hamiltonienne de Seidel ([Sei]). Nous vérifions la fonctorialité de notre construction en définissant des espaces de module de clusters occultés qui servent d’espaces sources pour des morphismes de comparaison.
Resumo:
On révise les prérequis de géométrie différentielle nécessaires à une première approche de la théorie de la quantification géométrique, c'est-à-dire des notions de base en géométrie symplectique, des notions de groupes et d'algèbres de Lie, d'action d'un groupe de Lie, de G-fibré principal, de connexion, de fibré associé et de structure presque-complexe. Ceci mène à une étude plus approfondie des fibrés en droites hermitiens, dont une condition d'existence de fibré préquantique sur une variété symplectique. Avec ces outils en main, nous commençons ensuite l'étude de la quantification géométrique, étape par étape. Nous introduisons la théorie de la préquantification, i.e. la construction des opérateurs associés à des observables classiques et la construction d'un espace de Hilbert. Des problèmes majeurs font surface lors de l'application concrète de la préquantification : les opérateurs ne sont pas ceux attendus par la première quantification et l'espace de Hilbert formé est trop gros. Une première correction, la polarisation, élimine quelques problèmes, mais limite grandement l'ensemble des observables classiques que l'on peut quantifier. Ce mémoire n'est pas un survol complet de la quantification géométrique, et cela n'est pas son but. Il ne couvre ni la correction métaplectique, ni le noyau BKS. Il est un à-côté de lecture pour ceux qui s'introduisent à la quantification géométrique. D'une part, il introduit des concepts de géométrie différentielle pris pour acquis dans (Woodhouse [21]) et (Sniatycki [18]), i.e. G-fibrés principaux et fibrés associés. Enfin, il rajoute des détails à quelques preuves rapides données dans ces deux dernières références.
Resumo:
En utilisant des approches qualitative and quantitative cette thèse démontre que les aspects intangibles des espaces architecturaux influencent le bien-être humain. Le but est de faire savoir que les espaces intérieurs ont un impact sur le bien-être et que l’architecture peut être considérée comme une solution pour satisfaire les besoins des usagers. Dans la première étude, l’approche qualitative est explorée en utilisant la narration pour identifier les aspects intangibles des espaces intérieurs qui affectent le bien-être. Une discussion s’articule autour du Modèle de Réponses Expérientielles des Humains (Model of Human Experiential Responses to Space) et de son importance comme outil pour déterrer les caractéristiques environnementales qui influencent le bien-être et qui peut être utile pour les professionnels du design. Les résultats démontrent que 43 catégories sont interprétées comme étant des aspects intangibles et servent de canevas pour trois autres études. Les résultats démontrent que certaines caractéristiques environnementales similaires dans les résidences et les bureaux augmentent le sentiment de satisfaction et de bien-être. Dans la deuxième étude, une approche quantitative est explorée en utilisant les neurosciences et l’architecture afin de mesurer comment les espaces architecturaux affectent le bien-être. Le concept de neuroscience / environnement / comportement est utilisé où huit corrélats neuroscientifiques (Zeisel 2006) sont investigués afin de mesurer les effets du cerveau sur les espaces architecturaux. Les résultats démontrent que l’environnement peut affecter l’humeur, le niveau d’attention et le niveau de stress chez les humains et peut également augmenter leur performance. Les deux études contribuent aux connaissances que les caractéristiques environnementales affectent l’humeur et le niveau de satisfaction de la même façon dans les espaces résidentiels et dans les espaces de bureaux. Un bon environnement qui énergise les employés peut affecter leur performance au travail de façon positive (Vischer 2005).
Resumo:
L’étiquette « homme-orchestre » est apposée à une grande variété de musiciens qui se distinguent en jouant seuls une performance qui est normalement interprétée par plusieurs personnes. La diversité qu’a pu prendre au cours du temps cette forme n’est pas prise en compte par la culture populaire qui propose une image relativement constante de cette figure tel que vue dans les films Mary Poppins (1964) de Walt Disney et One-man Band (2005) de Pixar. Il s’agit d’un seul performeur vêtu d’un costume coloré avec une grosse caisse sur le dos, des cymbales entre les jambes, une guitare ou un autre instrument à cordes dans les mains et un petit instrument à vent fixé assez près de sa bouche pour lui permettre d’alterner le chant et le jeu instrumental. Cette thèse propose une analyse de l’homme-orchestre qui va au-delà de sa simple production musicale en situant le phénomène comme un genre spectaculaire qui transmet un contenu symbolique à travers une relation tripartite entre performance divertissante, spectateur et image. Le contenu symbolique est lié aux idées caractéristiques du Siècle des lumières tels que la liberté, l’individu et une relation avec la technologie. Il est aussi incarné simultanément par les performeurs et par la représentation de l’homme-orchestre dans l’imaginaire collectif. En même temps, chaque performance sert à réaffirmer l’image de l’homme-orchestre, une image qui par répétitions est devenue un lieu commun de la culture, existant au-delà d’un seul performeur ou d’une seule performance. L’aspect visuel de l’homme-orchestre joue un rôle important dans ce processus par une utilisation inattendue du corps, une relation causale entre corps, technologie et production musicale ainsi que par l’utilisation de vêtements colorés et d’accessoires non musicaux tels des marionnettes, des feux d’artifice ou des animaux vivants. Ces éléments spectaculaires divertissent les spectateurs, ce qui se traduit, entre autres, par un gain financier pour le performeur. Le divertissement a une fonction phatique qui facilite la communication du contenu symbolique.
Resumo:
L'objectif du présent texte est de discuter de la portée épistémique de la méthode axiomatique. Tout d'abord, il sera question du contexte à partir duquel la méthode axiomatique a émergé, ce qui sera suivi d'une discussion des motivations du programme de Hilbert et de ses objectifs. Ensuite, nous exposerons la méthode axiomatique dans un cadre plus moderne afin de mettre en lumière son utilité et sa portée théorique. Finalement, il s'agira d'explorer l'influence de la méthode axiomatique en physique, surtout en ce qui a trait à l'application de la méthode par Hilbert. Nous discuterons de ses objectifs et de l'épistémologie qui accompagnait sa vision du 6 e problème, ce qui nous amènera à discuter des limites épistémiques de la méthode axiomatique et de l'entreprise scientifique en général.
Resumo:
La crise des fondements n’a pas affecté les fondements arithmétiques du constructivisme de Kronecker, Bien plutôt, c’est le finitisme kroneckerien de la théorie de l’arithmétique générale ou polynomiale qui a permis à Hilbert de surmonter la crise des fondements ensemblistes et qui a poussé Gödel, inspiré par Hilbert, à proposer une extension du point de vue finitiste pour obtenir une preuve constructive de la consistance de l’arithmétique dans son interprétation fonctionnelle « Dialectica ».