1 resultado para Queueing Theory
em Université de Montréal, Canada
Resumo:
Nous étudions la gestion de centres d'appels multi-compétences, ayant plusieurs types d'appels et groupes d'agents. Un centre d'appels est un système de files d'attente très complexe, où il faut généralement utiliser un simulateur pour évaluer ses performances. Tout d'abord, nous développons un simulateur de centres d'appels basé sur la simulation d'une chaîne de Markov en temps continu (CMTC), qui est plus rapide que la simulation conventionnelle par événements discrets. À l'aide d'une méthode d'uniformisation de la CMTC, le simulateur simule la chaîne de Markov en temps discret imbriquée de la CMTC. Nous proposons des stratégies pour utiliser efficacement ce simulateur dans l'optimisation de l'affectation des agents. En particulier, nous étudions l'utilisation des variables aléatoires communes. Deuxièmement, nous optimisons les horaires des agents sur plusieurs périodes en proposant un algorithme basé sur des coupes de sous-gradients et la simulation. Ce problème est généralement trop grand pour être optimisé par la programmation en nombres entiers. Alors, nous relaxons l'intégralité des variables et nous proposons des méthodes pour arrondir les solutions. Nous présentons une recherche locale pour améliorer la solution finale. Ensuite, nous étudions l'optimisation du routage des appels aux agents. Nous proposons une nouvelle politique de routage basé sur des poids, les temps d'attente des appels, et les temps d'inoccupation des agents ou le nombre d'agents libres. Nous développons un algorithme génétique modifié pour optimiser les paramètres de routage. Au lieu d'effectuer des mutations ou des croisements, cet algorithme optimise les paramètres des lois de probabilité qui génèrent la population de solutions. Par la suite, nous développons un algorithme d'affectation des agents basé sur l'agrégation, la théorie des files d'attente et la probabilité de délai. Cet algorithme heuristique est rapide, car il n'emploie pas la simulation. La contrainte sur le niveau de service est convertie en une contrainte sur la probabilité de délai. Par après, nous proposons une variante d'un modèle de CMTC basé sur le temps d'attente du client à la tête de la file. Et finalement, nous présentons une extension d'un algorithme de coupe pour l'optimisation stochastique avec recours de l'affectation des agents dans un centre d'appels multi-compétences.