2 resultados para Quasi-Regular Solutions

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le problème de tarification qui nous intéresse ici consiste à maximiser le revenu généré par les usagers d'un réseau de transport. Pour se rendre à leurs destinations, les usagers font un choix de route et utilisent des arcs sur lesquels nous imposons des tarifs. Chaque route est caractérisée (aux yeux de l'usager) par sa "désutilité", une mesure de longueur généralisée tenant compte à la fois des tarifs et des autres coûts associés à son utilisation. Ce problème a surtout été abordé sous une modélisation déterministe de la demande selon laquelle seules des routes de désutilité minimale se voient attribuer une mesure positive de flot. Le modèle déterministe se prête bien à une résolution globale, mais pèche par manque de réalisme. Nous considérons ici une extension probabiliste de ce modèle, selon laquelle les usagers d'un réseau sont alloués aux routes d'après un modèle de choix discret logit. Bien que le problème de tarification qui en résulte est non linéaire et non convexe, il conserve néanmoins une forte composante combinatoire que nous exploitons à des fins algorithmiques. Notre contribution se répartit en trois articles. Dans le premier, nous abordons le problème d'un point de vue théorique pour le cas avec une paire origine-destination. Nous développons une analyse de premier ordre qui exploite les propriétés analytiques de l'affectation logit et démontrons la validité de règles de simplification de la topologie du réseau qui permettent de réduire la dimension du problème sans en modifier la solution. Nous établissons ensuite l'unimodalité du problème pour une vaste gamme de topologies et nous généralisons certains de nos résultats au problème de la tarification d'une ligne de produits. Dans le deuxième article, nous abordons le problème d'un point de vue numérique pour le cas avec plusieurs paires origine-destination. Nous développons des algorithmes qui exploitent l'information locale et la parenté des formulations probabilistes et déterministes. Un des résultats de notre analyse est l'obtention de bornes sur l'erreur commise par les modèles combinatoires dans l'approximation du revenu logit. Nos essais numériques montrent qu'une approximation combinatoire rudimentaire permet souvent d'identifier des solutions quasi-optimales. Dans le troisième article, nous considérons l'extension du problème à une demande hétérogène. L'affectation de la demande y est donnée par un modèle de choix discret logit mixte où la sensibilité au prix d'un usager est aléatoire. Sous cette modélisation, l'expression du revenu n'est pas analytique et ne peut être évaluée de façon exacte. Cependant, nous démontrons que l'utilisation d'approximations non linéaires et combinatoires permet d'identifier des solutions quasi-optimales. Finalement, nous en profitons pour illustrer la richesse du modèle, par le biais d'une interprétation économique, et examinons plus particulièrement la contribution au revenu des différents groupes d'usagers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La modélisation géométrique est importante autant en infographie qu'en ingénierie. Notre capacité à représenter l'information géométrique fixe les limites et la facilité avec laquelle on manipule les objets 3D. Une de ces représentations géométriques est le maillage volumique, formé de polyèdres assemblés de sorte à approcher une forme désirée. Certaines applications, tels que le placage de textures et le remaillage, ont avantage à déformer le maillage vers un domaine plus régulier pour faciliter le traitement. On dit qu'une déformation est \emph{quasi-conforme} si elle borne la distorsion. Cette thèse porte sur l’étude et le développement d'algorithmes de déformation quasi-conforme de maillages volumiques. Nous étudions ces types de déformations parce qu’elles offrent de bonnes propriétés de préservation de l’aspect local d’un solide et qu’elles ont été peu étudiées dans le contexte de l’informatique graphique, contrairement à leurs pendants 2D. Cette recherche tente de généraliser aux volumes des concepts bien maitrisés pour la déformation de surfaces. Premièrement, nous présentons une approche linéaire de la quasi-conformité. Nous développons une méthode déformant l’objet vers son domaine paramétrique par une méthode des moindres carrés linéaires. Cette méthode est simple d'implémentation et rapide d'exécution, mais n'est qu'une approximation de la quasi-conformité car elle ne borne pas la distorsion. Deuxièmement, nous remédions à ce problème par une approche non linéaire basée sur les positions des sommets. Nous développons une technique déformant le domaine paramétrique vers le solide par une méthode des moindres carrés non linéaires. La non-linéarité permet l’inclusion de contraintes garantissant l’injectivité de la déformation. De plus, la déformation du domaine paramétrique au lieu de l’objet lui-même permet l’utilisation de domaines plus généraux. Troisièmement, nous présentons une approche non linéaire basée sur les angles dièdres. Cette méthode définit la déformation du solide par les angles dièdres au lieu des positions des sommets du maillage. Ce changement de variables permet une expression naturelle des bornes de distorsion de la déformation. Nous présentons quelques applications de cette nouvelle approche dont la paramétrisation, l'interpolation, l'optimisation et la compression de maillages tétraédriques.