3 resultados para Quantum spin Hall insulator
em Université de Montréal, Canada
Resumo:
Ce mémoire est une partie d’un programme de recherche qui étudie la superintégrabilité des systèmes avec spin. Plus particulièrement, nous nous intéressons à un hamiltonien avec interaction spin-orbite en trois dimensions admettant une intégrale du mouvement qui est un polynôme matriciel d’ordre deux dans l’impulsion. Puisque nous considérons un hamiltonien invariant sous rotation et sous parité, nous classifions les intégrales du mouvement selon des multiplets irréductibles de O(3). Nous calculons le commutateur entre l’hamiltonien et un opérateur général d’ordre deux dans l’impulsion scalaire, pseudoscalaire, vecteur et pseudovecteur. Nous donnons la classification complète des systèmes admettant des intégrales du mouvement scalaire et vectorielle. Nous trouvons une condition nécessaire à remplir pour le potentiel sous forme d’une équation différentielle pour les cas pseudo-scalaire et pseudo-vectoriel. Nous utilisons la réduction par symétrie pour obtenir des solutions particulières de ces équations.
Resumo:
Dans cette thèse l’ancienne question philosophique “tout événement a-t-il une cause ?” sera examinée à la lumière de la mécanique quantique et de la théorie des probabilités. Aussi bien en physique qu’en philosophie des sciences la position orthodoxe maintient que le monde physique est indéterministe. Au niveau fondamental de la réalité physique – au niveau quantique – les événements se passeraient sans causes, mais par chance, par hasard ‘irréductible’. Le théorème physique le plus précis qui mène à cette conclusion est le théorème de Bell. Ici les prémisses de ce théorème seront réexaminées. Il sera rappelé que d’autres solutions au théorème que l’indéterminisme sont envisageables, dont certaines sont connues mais négligées, comme le ‘superdéterminisme’. Mais il sera argué que d’autres solutions compatibles avec le déterminisme existent, notamment en étudiant des systèmes physiques modèles. Une des conclusions générales de cette thèse est que l’interprétation du théorème de Bell et de la mécanique quantique dépend crucialement des prémisses philosophiques desquelles on part. Par exemple, au sein de la vision d’un Spinoza, le monde quantique peut bien être compris comme étant déterministe. Mais il est argué qu’aussi un déterminisme nettement moins radical que celui de Spinoza n’est pas éliminé par les expériences physiques. Si cela est vrai, le débat ‘déterminisme – indéterminisme’ n’est pas décidé au laboratoire : il reste philosophique et ouvert – contrairement à ce que l’on pense souvent. Dans la deuxième partie de cette thèse un modèle pour l’interprétation de la probabilité sera proposé. Une étude conceptuelle de la notion de probabilité indique que l’hypothèse du déterminisme aide à mieux comprendre ce que c’est qu’un ‘système probabiliste’. Il semble que le déterminisme peut répondre à certaines questions pour lesquelles l’indéterminisme n’a pas de réponses. Pour cette raison nous conclurons que la conjecture de Laplace – à savoir que la théorie des probabilités présuppose une réalité déterministe sous-jacente – garde toute sa légitimité. Dans cette thèse aussi bien les méthodes de la philosophie que de la physique seront utilisées. Il apparaît que les deux domaines sont ici solidement reliés, et qu’ils offrent un vaste potentiel de fertilisation croisée – donc bidirectionnelle.
Resumo:
À travers cette thèse, nous revisitons les différentes étapes qui ont conduit à la découverte des isolants topologiques, suite à quoi nous nous penchons sur la question à savoir si une phase topologiquement non-triviale peut coexister avec un état de symétrie brisée. Nous abordons les concepts les plus importants dans la description de ce nouvel état de la matière, et tentons de comprendre les conséquences fascinantes qui en découlent. Il s’agit d’un champ de recherche fortement alimenté par la théorie, ainsi, l’étude du cadre théorique est nécessaire pour atteindre une compréhension profonde du sujet. Le chapitre 1 comprend un retour sur l’effet de Hall quantique, afin de motiver les sections subséquentes. Le chapitre 2 présente la première réalisation d’un isolant topologique à deux dimensions dans un puits quantique de HgTe/CdTe, suite à quoi ces résultats sont généralisés à trois dimensions. Nous verrons ensuite comment incorporer des principes de topologie dans la caractérisation d’un système spécifique, à l’aide d’invariants topologiques. Le chapitre 3 introduit le premier dérivé de l’état isolant topologique, soit l’isolant topologique antiferromagnétique (ITAF). Après avoir motivé théoriquement le sujet et introduit un invariant propre à ce nouvel état ITAF, qui est couplé à l’ordre de Néel, nous explorons, dans les chapitres 4 et 5, deux candidats de choix pour la phase ITAF : GdBiPt et NdBiPt.