6 resultados para Quantum Communication
em Université de Montréal, Canada
Resumo:
Nous introduisons un nouveau modèle de la communication à deux parties dans lequel nous nous intéressons au temps que prennent deux participants à effectuer une tâche à travers un canal avec délai d. Nous établissons quelques bornes supérieures et inférieures et comparons ce nouveau modèle aux modèles de communication classiques et quantiques étudiés dans la littérature. Nous montrons que la complexité de la communication d’une fonction sur un canal avec délai est bornée supérieurement par sa complexité de la communication modulo un facteur multiplicatif d/ lg d. Nous présentons ensuite quelques exemples de fonctions pour lesquelles une stratégie astucieuse se servant du temps mort confère un avantage sur une implémentation naïve d’un protocole de communication optimal en terme de complexité de la communication. Finalement, nous montrons qu’un canal avec délai permet de réaliser un échange de bit cryptographique, mais que, par lui-même, est insuffisant pour réaliser la primitive cryptographique de transfert équivoque.
Resumo:
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel. Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment. Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique. Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive.
Resumo:
Dans ce mémoire, je démontre que la distribution de probabilités de l'état quantique Greenberger-Horne-Zeilinger (GHZ) sous l'action locale de mesures de von Neumann indépendantes sur chaque qubit suit une distribution qui est une combinaison convexe de deux distributions. Les coefficients de la combinaison sont reliés aux parties équatoriales des mesures et les distributions associées à ces coefficients sont reliées aux parties réelles des mesures. Une application possible du résultat est qu'il permet de scinder en deux la simulation de l'état GHZ. Simuler, en pire cas ou en moyenne, un état quantique comme GHZ avec des ressources aléatoires, partagées ou privées, et des ressources classiques de communication, ou même des ressources fantaisistes comme les boîtes non locales, est un problème important en complexité de la communication quantique. On peut penser à ce problème de simulation comme un problème où plusieurs personnes obtiennent chacune une mesure de von Neumann à appliquer sur le sous-système de l'état GHZ qu'il partage avec les autres personnes. Chaque personne ne connaît que les données décrivant sa mesure et d'aucune façon une personne ne connaît les données décrivant la mesure d'une autre personne. Chaque personne obtient un résultat aléatoire classique. La distribution conjointe de ces résultats aléatoires classiques suit la distribution de probabilités trouvée dans ce mémoire. Le but est de simuler classiquement la distribution de probabilités de l'état GHZ. Mon résultat indique une marche à suivre qui consiste d'abord à simuler les parties équatoriales des mesures pour pouvoir ensuite savoir laquelle des distributions associées aux parties réelles des mesures il faut simuler. D'autres chercheurs ont trouvé comment simuler les parties équatoriales des mesures de von Neumann avec de la communication classique dans le cas de 3 personnes, mais la simulation des parties réelles résiste encore et toujours.
Resumo:
Key agreement is a cryptographic scenario between two legitimate parties, who need to establish a common secret key over a public authenticated channel, and an eavesdropper who intercepts all their messages in order to learn the secret. We consider query complexity in which we count only the number of evaluations (queries) of a given black-box function, and classical communication channels. Ralph Merkle provided the first unclassified scheme for secure communications over insecure channels. When legitimate parties are willing to ask O(N) queries for some parameter N, any classical eavesdropper needs Omega(N^2) queries before being able to learn their secret, which is is optimal. However, a quantum eavesdropper can break this scheme in O(N) queries. Furthermore, it was conjectured that any scheme, in which legitimate parties are classical, could be broken in O(N) quantum queries. In this thesis, we introduce protocols à la Merkle that fall into two categories. When legitimate parties are restricted to use classical computers, we offer the first secure classical scheme. It requires Omega(N^{13/12}) queries of a quantum eavesdropper to learn the secret. We give another protocol having security of Omega(N^{7/6}) queries. Furthermore, for any k>= 2, we introduce a classical protocol in which legitimate parties establish a secret in O(N) queries while the optimal quantum eavesdropping strategy requires Theta(N^{1/2+k/{k+1}}) queries, approaching Theta(N^{3/2}) when k increases. When legitimate parties are provided with quantum computers, we present two quantum protocols improving on the best known scheme before this work. Furthermore, for any k>= 2, we give a quantum protocol in which legitimate parties establish a secret in O(N) queries while the optimal quantum eavesdropping strategy requires Theta(N^{1+{k}/{k+1}})} queries, approaching Theta(N^{2}) when k increases.
Resumo:
Dans ce mémoire, nous nous pencherons tout particulièrement sur une primitive cryptographique connue sous le nom de partage de secret. Nous explorerons autant le domaine classique que le domaine quantique de ces primitives, couronnant notre étude par la présentation d’un nouveau protocole de partage de secret quantique nécessitant un nombre minimal de parts quantiques c.-à-d. une seule part quantique par participant. L’ouverture de notre étude se fera par la présentation dans le chapitre préliminaire d’un survol des notions mathématiques sous-jacentes à la théorie de l’information quantique ayant pour but primaire d’établir la notation utilisée dans ce manuscrit, ainsi que la présentation d’un précis des propriétés mathématique de l’état de Greenberger-Horne-Zeilinger (GHZ) fréquemment utilisé dans les domaines quantiques de la cryptographie et des jeux de la communication. Mais, comme nous l’avons mentionné plus haut, c’est le domaine cryptographique qui restera le point focal de cette étude. Dans le second chapitre, nous nous intéresserons à la théorie des codes correcteurs d’erreurs classiques et quantiques qui seront à leur tour d’extrême importances lors de l’introduction de la théorie quantique du partage de secret dans le chapitre suivant. Dans la première partie du troisième chapitre, nous nous concentrerons sur le domaine classique du partage de secret en présentant un cadre théorique général portant sur la construction de ces primitives illustrant tout au long les concepts introduits par des exemples présentés pour leurs intérêts autant historiques que pédagogiques. Ceci préparera le chemin pour notre exposé sur la théorie quantique du partage de secret qui sera le focus de la seconde partie de ce même chapitre. Nous présenterons alors les théorèmes et définitions les plus généraux connus à date portant sur la construction de ces primitives en portant un intérêt particulier au partage quantique à seuil. Nous montrerons le lien étroit entre la théorie quantique des codes correcteurs d’erreurs et celle du partage de secret. Ce lien est si étroit que l’on considère les codes correcteurs d’erreurs quantiques étaient de plus proches analogues aux partages de secrets quantiques que ne leur étaient les codes de partage de secrets classiques. Finalement, nous présenterons un de nos trois résultats parus dans A. Broadbent, P.-R. Chouha, A. Tapp (2009); un protocole sécuritaire et minimal de partage de secret quantique a seuil (les deux autres résultats dont nous traiterons pas ici portent sur la complexité de la communication et sur la simulation classique de l’état de GHZ).
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.