5 resultados para Quadratic Fields
em Université de Montréal, Canada
Resumo:
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.)
Resumo:
This paper addresses the issue of estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads us to take into account the covariance between the mean and the variance and the variance of the variance, that is, the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely, the QMLE, the GMM and the M-estimation. The ususal univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular, the importance of skewness.
Resumo:
Alors que les hypothèses de valence et de dominance hémisphérique droite ont longtemps été utilisées afin d’expliquer les résultats de recherches portant sur le traitement émotionnel de stimuli verbaux et non-verbaux, la littérature sur le traitement de mots émotionnels est généralement en désaccord avec ces deux hypothèses et semble converger vers celle du décours temporel. Cette dernière hypothèse stipule que le décours temporal lors du traitement de certains aspects du système sémantique est plus lent pour l’hémisphère droit que pour l’hémisphère gauche. L’objectif de cette thèse est d’examiner la façon dont les mots émotionnels sont traités par les hémisphères cérébraux chez des individus jeunes et âgés. À cet effet, la première étude a pour objectif d’évaluer l’hypothèse du décours temporel en examinant les patrons d’activations relatif au traitement de mots émotionnels par les hémisphères gauche et droit en utilisant un paradigme d’amorçage sémantique et une tâche d’évaluation. En accord avec l’hypothèse du décours temporel, les résultats obtenus pour les hommes montrent que l’amorçage débute plus tôt dans l’hémisphère gauche et plus tard dans l’hémisphère droit. Par contre, les résultats obtenus pour les femmes sont plutôt en accord avec l’hypothèse de valence, car les mots à valence positive sont principalement amorcés dans l’hémisphère gauche, alors que les mots à valence négative sont principalement amorcés dans l’hémisphère droit. Puisque les femmes sont considérées plus « émotives » que les hommes, les résultats ainsi obtenus peuvent être la conséquence des effets de la tâche, qui exige une décision explicite au sujet de la cible. La deuxième étude a pour objectif d’examiner la possibilité que la préservation avec l’âge de l’habileté à traiter des mots émotionnels s’exprime par un phénomène compensatoire d’activations bilatérales fréquemment observées chez des individus âgés et maintenant un haut niveau de performance, ce qui est également connu sous le terme de phénomène HAROLD (Hemispheric Asymmetry Reduction in OLDer adults). En comparant les patrons d’amorçages de mots émotionnels auprès de jeunes adultes et d’adultes âgés performants à des niveaux élevés sur le plan comportemental, les résultats révèlent que l’amorçage se manifeste unilatéralement chez les jeunes participants et bilatéralement chez les participants âgés. Par ailleurs, l’amorçage se produit chez les participants âgés avec un léger délai, ce qui peut résulter d’une augmentation des seuils sensoriels chez les participants âgés, qui nécessiteraient alors davantage de temps pour encoder les stimuli et entamer l’activation à travers le réseau sémantique. Ainsi, la performance équivalente au niveau de la précision retrouvée chez les deux groupes de participants et l’amorçage bilatéral observé chez les participants âgés sont en accord avec l’hypothèse de compensation du phénomène HAROLD.
Resumo:
La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.
Resumo:
Cette thèse traite de deux thèmes principaux. Le premier concerne l'étude des empilements apolloniens généralisés de cercles et de sphères. Généralisations des classiques empilements apolloniens, dont l'étude remonte à la Grèce antique, ces objets s'imposent comme particulièrement attractifs en théorie des nombres. Dans cette thèse sera étudié l'ensemble des courbures (les inverses des rayons) des cercles ou sphères de tels empilements. Sous de bonnes conditions, ces courbures s'avèrent être toutes entières. Nous montrerons qu'elles vérifient un principe local-global partiel, nous compterons le nombre de cercles de courbures plus petites qu'une quantité donnée et nous nous intéresserons également à l'étude des courbures premières. Le second thème a trait à la distribution angulaire des idéaux (ou plutôt ici des nombres idéaux) des corps de nombres quadratiques imaginaires (que l'on peut voir comme la distribution des points à coordonnées entières sur des ellipses). Nous montrerons que la discrépance de l'ensemble des angles des nombres idéaux entiers de norme donnée est faible et nous nous intéresserons également au problème des écarts bornés entre les premiers d'extensions quadratiques imaginaires dans des secteurs.