11 resultados para Probability distributions
em Université de Montréal, Canada
Harsanyi’s Social Aggregation Theorem : A Multi-Profile Approach with Variable-Population Extensions
Resumo:
This paper provides new versions of Harsanyi’s social aggregation theorem that are formulated in terms of prospects rather than lotteries. Strengthening an earlier result, fixed-population ex-ante utilitarianism is characterized in a multi-profile setting with fixed probabilities. In addition, we extend the social aggregation theorem to social-evaluation problems under uncertainty with a variable population and generalize our approach to uncertain alternatives, which consist of compound vectors of probability distributions and prospects.
Resumo:
This paper presents a new theory of random consumer demand. The primitive is a collection of probability distributions, rather than a binary preference. Various assumptions constrain these distributions, including analogues of common assumptions about preferences such as transitivity, monotonicity and convexity. Two results establish a complete representation of theoretically consistent random demand. The purpose of this theory of random consumer demand is application to empirical consumer demand problems. To this end, the theory has several desirable properties. It is intrinsically stochastic, so the econometrician can apply it directly without adding extrinsic randomness in the form of residuals. Random demand is parsimoniously represented by a single function on the consumption set. Finally, we have a practical method for statistical inference based on the theory, described in McCausland (2004), a companion paper.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
La tâche de maintenance ainsi que la compréhension des programmes orientés objet (OO) deviennent de plus en plus coûteuses. L’analyse des liens de dépendance peut être une solution pour faciliter ces tâches d’ingénierie. Cependant, analyser les liens de dépendance est une tâche à la fois importante et difficile. Nous proposons une approche pour l'étude des liens de dépendance internes pour des programmes OO, dans un cadre probabiliste, où les entrées du programme peuvent être modélisées comme un vecteur aléatoire, ou comme une chaîne de Markov. Dans ce cadre, les métriques de couplage deviennent des variables aléatoires dont les distributions de probabilité peuvent être étudiées en utilisant les techniques de simulation Monte-Carlo. Les distributions obtenues constituent un point d’entrée pour comprendre les liens de dépendance internes entre les éléments du programme, ainsi que leur comportement général. Ce travail est valable dans le cas où les valeurs prises par la métrique dépendent des entrées du programme et que ces entrées ne sont pas fixées à priori. Nous illustrons notre approche par deux études de cas.
Resumo:
Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Étant donné leur facilité d’application, ces méthodes sont largement répandues dans plusieurs communautés scientifiques et bien certainement en statistique, particulièrement en analyse bayésienne. Depuis l’apparition de la première méthode MCMC en 1953, le nombre de ces algorithmes a considérablement augmenté et ce sujet continue d’être une aire de recherche active. Un nouvel algorithme MCMC avec ajustement directionnel a été récemment développé par Bédard et al. (IJSS, 9 :2008) et certaines de ses propriétés restent partiellement méconnues. L’objectif de ce mémoire est de tenter d’établir l’impact d’un paramètre clé de cette méthode sur la performance globale de l’approche. Un second objectif est de comparer cet algorithme à d’autres méthodes MCMC plus versatiles afin de juger de sa performance de façon relative.
Resumo:
Les méthodes de Monte Carlo par chaînes de Markov (MCCM) sont des méthodes servant à échantillonner à partir de distributions de probabilité. Ces techniques se basent sur le parcours de chaînes de Markov ayant pour lois stationnaires les distributions à échantillonner. Étant donné leur facilité d’application, elles constituent une des approches les plus utilisées dans la communauté statistique, et tout particulièrement en analyse bayésienne. Ce sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Depuis l’apparition de la première méthode MCCM en 1953 (la méthode de Metropolis, voir [10]), l’intérêt pour ces méthodes, ainsi que l’éventail d’algorithmes disponibles ne cessent de s’accroître d’une année à l’autre. Bien que l’algorithme Metropolis-Hastings (voir [8]) puisse être considéré comme l’un des algorithmes de Monte Carlo par chaînes de Markov les plus généraux, il est aussi l’un des plus simples à comprendre et à expliquer, ce qui en fait un algorithme idéal pour débuter. Il a été sujet de développement par plusieurs chercheurs. L’algorithme Metropolis à essais multiples (MTM), introduit dans la littérature statistique par [9], est considéré comme un développement intéressant dans ce domaine, mais malheureusement son implémentation est très coûteuse (en termes de temps). Récemment, un nouvel algorithme a été développé par [1]. Il s’agit de l’algorithme Metropolis à essais multiples revisité (MTM revisité), qui définit la méthode MTM standard mentionnée précédemment dans le cadre de l’algorithme Metropolis-Hastings sur un espace étendu. L’objectif de ce travail est, en premier lieu, de présenter les méthodes MCCM, et par la suite d’étudier et d’analyser les algorithmes Metropolis-Hastings ainsi que le MTM standard afin de permettre aux lecteurs une meilleure compréhension de l’implémentation de ces méthodes. Un deuxième objectif est d’étudier les perspectives ainsi que les inconvénients de l’algorithme MTM revisité afin de voir s’il répond aux attentes de la communauté statistique. Enfin, nous tentons de combattre le problème de sédentarité de l’algorithme MTM revisité, ce qui donne lieu à un tout nouvel algorithme. Ce nouvel algorithme performe bien lorsque le nombre de candidats générés à chaque itérations est petit, mais sa performance se dégrade à mesure que ce nombre de candidats croît.
Resumo:
We generalize the classical expected-utility criterion by weakening transitivity to Suzumura consistency. In the absence of full transitivity, reflexivity and completeness no longer follow as a consequence of the system of axioms employed and a richer class of rankings of probability distributions results. This class is characterized by means of standard expected-utility axioms in addition to Suzumura consistency. An important feature of some members of our new class is that they allow us to soften the negative impact of wellknown paradoxes without abandoning the expected-utility framework altogether.
Resumo:
clRNG et clProbdist sont deux interfaces de programmation (APIs) que nous avons développées pour la génération de nombres aléatoires uniformes et non uniformes sur des dispositifs de calculs parallèles en utilisant l’environnement OpenCL. La première interface permet de créer au niveau d’un ordinateur central (hôte) des objets de type stream considérés comme des générateurs virtuels parallèles qui peuvent être utilisés aussi bien sur l’hôte que sur les dispositifs parallèles (unités de traitement graphique, CPU multinoyaux, etc.) pour la génération de séquences de nombres aléatoires. La seconde interface permet aussi de générer au niveau de ces unités des variables aléatoires selon différentes lois de probabilité continues et discrètes. Dans ce mémoire, nous allons rappeler des notions de base sur les générateurs de nombres aléatoires, décrire les systèmes hétérogènes ainsi que les techniques de génération parallèle de nombres aléatoires. Nous présenterons aussi les différents modèles composant l’architecture de l’environnement OpenCL et détaillerons les structures des APIs développées. Nous distinguons pour clRNG les fonctions qui permettent la création des streams, les fonctions qui génèrent les variables aléatoires uniformes ainsi que celles qui manipulent les états des streams. clProbDist contient les fonctions de génération de variables aléatoires non uniformes selon la technique d’inversion ainsi que les fonctions qui permettent de retourner différentes statistiques des lois de distribution implémentées. Nous évaluerons ces interfaces de programmation avec deux simulations qui implémentent un exemple simplifié d’un modèle d’inventaire et un exemple d’une option financière. Enfin, nous fournirons les résultats d’expérimentation sur les performances des générateurs implémentés.
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.
Resumo:
Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.