14 resultados para Probability distribution functions

em Université de Montréal, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans ce mémoire, je démontre que la distribution de probabilités de l'état quantique Greenberger-Horne-Zeilinger (GHZ) sous l'action locale de mesures de von Neumann indépendantes sur chaque qubit suit une distribution qui est une combinaison convexe de deux distributions. Les coefficients de la combinaison sont reliés aux parties équatoriales des mesures et les distributions associées à ces coefficients sont reliées aux parties réelles des mesures. Une application possible du résultat est qu'il permet de scinder en deux la simulation de l'état GHZ. Simuler, en pire cas ou en moyenne, un état quantique comme GHZ avec des ressources aléatoires, partagées ou privées, et des ressources classiques de communication, ou même des ressources fantaisistes comme les boîtes non locales, est un problème important en complexité de la communication quantique. On peut penser à ce problème de simulation comme un problème où plusieurs personnes obtiennent chacune une mesure de von Neumann à appliquer sur le sous-système de l'état GHZ qu'il partage avec les autres personnes. Chaque personne ne connaît que les données décrivant sa mesure et d'aucune façon une personne ne connaît les données décrivant la mesure d'une autre personne. Chaque personne obtient un résultat aléatoire classique. La distribution conjointe de ces résultats aléatoires classiques suit la distribution de probabilités trouvée dans ce mémoire. Le but est de simuler classiquement la distribution de probabilités de l'état GHZ. Mon résultat indique une marche à suivre qui consiste d'abord à simuler les parties équatoriales des mesures pour pouvoir ensuite savoir laquelle des distributions associées aux parties réelles des mesures il faut simuler. D'autres chercheurs ont trouvé comment simuler les parties équatoriales des mesures de von Neumann avec de la communication classique dans le cas de 3 personnes, mais la simulation des parties réelles résiste encore et toujours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'imagerie intravasculaire ultrasonore (IVUS) est une technologie médicale par cathéter qui produit des images de coupe des vaisseaux sanguins. Elle permet de quantifier et d'étudier la morphologie de plaques d'athérosclérose en plus de visualiser la structure des vaisseaux sanguins (lumière, intima, plaque, média et adventice) en trois dimensions. Depuis quelques années, cette méthode d'imagerie est devenue un outil de choix en recherche aussi bien qu'en clinique pour l'étude de la maladie athérosclérotique. L'imagerie IVUS est par contre affectée par des artéfacts associés aux caractéristiques des capteurs ultrasonores, par la présence de cônes d'ombre causés par les calcifications ou des artères collatérales, par des plaques dont le rendu est hétérogène ou par le chatoiement ultrasonore (speckle) sanguin. L'analyse automatisée de séquences IVUS de grande taille représente donc un défi important. Une méthode de segmentation en trois dimensions (3D) basée sur l'algorithme du fast-marching à interfaces multiples est présentée. La segmentation utilise des attributs des régions et contours des images IVUS. En effet, une nouvelle fonction de vitesse de propagation des interfaces combinant les fonctions de densité de probabilité des tons de gris des composants de la paroi vasculaire et le gradient des intensités est proposée. La segmentation est grandement automatisée puisque la lumière du vaisseau est détectée de façon entièrement automatique. Dans une procédure d'initialisation originale, un minimum d'interactions est nécessaire lorsque les contours initiaux de la paroi externe du vaisseau calculés automatiquement sont proposés à l'utilisateur pour acceptation ou correction sur un nombre limité d'images de coupe longitudinale. La segmentation a été validée à l'aide de séquences IVUS in vivo provenant d'artères fémorales provenant de différents sous-groupes d'acquisitions, c'est-à-dire pré-angioplastie par ballon, post-intervention et à un examen de contrôle 1 an suivant l'intervention. Les résultats ont été comparés avec des contours étalons tracés manuellement par différents experts en analyse d'images IVUS. Les contours de la lumière et de la paroi externe du vaisseau détectés selon la méthode du fast-marching sont en accord avec les tracés manuels des experts puisque les mesures d'aire sont similaires et les différences point-à-point entre les contours sont faibles. De plus, la segmentation par fast-marching 3D s'est effectuée en un temps grandement réduit comparativement à l'analyse manuelle. Il s'agit de la première étude rapportée dans la littérature qui évalue la performance de la segmentation sur différents types d'acquisition IVUS. En conclusion, la segmentation par fast-marching combinant les informations des distributions de tons de gris et du gradient des intensités des images est précise et efficace pour l'analyse de séquences IVUS de grandes tailles. Un outil de segmentation robuste pourrait devenir largement répandu pour la tâche ardue et fastidieuse qu'est l'analyse de ce type d'images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'un des modèles d'apprentissage non-supervisé générant le plus de recherche active est la machine de Boltzmann --- en particulier la machine de Boltzmann restreinte, ou RBM. Un aspect important de l'entraînement ainsi que l'exploitation d'un tel modèle est la prise d'échantillons. Deux développements récents, la divergence contrastive persistante rapide (FPCD) et le herding, visent à améliorer cet aspect, se concentrant principalement sur le processus d'apprentissage en tant que tel. Notamment, le herding renonce à obtenir un estimé précis des paramètres de la RBM, définissant plutôt une distribution par un système dynamique guidé par les exemples d'entraînement. Nous généralisons ces idées afin d'obtenir des algorithmes permettant d'exploiter la distribution de probabilités définie par une RBM pré-entraînée, par tirage d'échantillons qui en sont représentatifs, et ce sans que l'ensemble d'entraînement ne soit nécessaire. Nous présentons trois méthodes: la pénalisation d'échantillon (basée sur une intuition théorique) ainsi que la FPCD et le herding utilisant des statistiques constantes pour la phase positive. Ces méthodes définissent des systèmes dynamiques produisant des échantillons ayant les statistiques voulues et nous les évaluons à l'aide d'une méthode d'estimation de densité non-paramétrique. Nous montrons que ces méthodes mixent substantiellement mieux que la méthode conventionnelle, l'échantillonnage de Gibbs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse s’intéresse aux problèmes de tournées de véhicules où l’on retrouve des contraintes de chargement ayant un impact sur les séquences de livraisons permises. Plus particulièrement, les items placés dans l’espace de chargement d’un véhicule doivent être directement accessibles lors de leur livraison sans qu’il soit nécessaire de déplacer d’autres items. Ces problèmes sont rencontrés dans plusieurs entreprises de transport qui livrent de gros objets (meubles, électroménagers). Le premier article de cette thèse porte sur une méthode exacte pour un problème de confection d’une seule tournée où un véhicule, dont l’aire de chargement est divisée en un certain nombre de piles, doit effectuer des cueillettes et des livraisons respectant une contrainte de type dernier entré, premier sorti. Lors d’une collecte, les items recueillis doivent nécessairement être déposés sur le dessus de l’une des piles. Par ailleurs, lors d’une livraison, les items doivent nécessairement se trouver sur le dessus de l’une des piles. Une méthode de séparation et évaluation avec plans sécants est proposée pour résoudre ce problème. Le second article présente une méthode de résolution exacte, également de type séparation et évaluation avec plans sécants, pour un problème de tournées de véhicules avec chargement d’items rectangulaires en deux dimensions. L’aire de chargement des véhicules correspond aussi à un espace rectangulaire avec une orientation, puisque les items doivent être chargés et déchargés par l’un des côtés. Une contrainte impose que les items d’un client soient directement accessibles au moment de leur livraison. Le dernier article aborde une problème de tournées de véhicules avec chargement d’items rectangulaires, mais où les dimensions de certains items ne sont pas connus avec certitude lors de la planification des tournées. Il est toutefois possible d’associer une distribution de probabilités discrète sur les dimensions possibles de ces items. Le problème est résolu de manière exacte avec la méthode L-Shape en nombres entiers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malgré une vaste littérature concernant les propriétés structurelles, électroniques et ther- modynamiques du silicium amorphe (a-Si), la structure microscopique de ce semi-cond- ucteur covalent échappe jusqu’à ce jour à une description exacte. Plusieurs questions demeurent en suspens, concernant par exemple la façon dont le désordre est distribué à travers la matrice amorphe : uniformément ou au sein de petites régions hautement déformées ? D’autre part, comment ce matériau relaxe-t-il : par des changements homo- gènes augmentant l’ordre à moyenne portée, par l’annihilation de défauts ponctuels ou par une combinaison de ces phénomènes ? Le premier article présenté dans ce mémoire propose une caractérisation des défauts de coordination, en terme de leur arrangement spatial et de leurs énergies de formation. De plus, les corrélations spatiales entre les défauts structurels sont examinées en se ba- sant sur un paramètre qui quantifie la probabilité que deux sites défectueux partagent un lien. Les géométries typiques associées aux atomes sous et sur-coordonnés sont extraites du modèle et décrites en utilisant les distributions partielles d’angles tétraédriques. L’in- fluence de la relaxation induite par le recuit sur les défauts structurels est également analysée. Le second article porte un regard sur la relation entre l’ordre à moyenne portée et la relaxation thermique. De récentes mesures expérimentales montrent que le silicium amorphe préparé par bombardement ionique, lorsque soumis à un recuit, subit des chan- gements structuraux qui laissent une signature dans la fonction de distribution radiale, et cela jusqu’à des distances correspondant à la troisième couche de voisins.[1, 2] Il n’est pas clair si ces changements sont une répercussion d’une augmentation de l’ordre à courte portée, ou s’ils sont réellement la manifestation d’un ordonnement parmi les angles dièdres, et cette section s’appuie sur des simulations numériques d’implantation ionique et de recuit, afin de répondre à cette question. D’autre part, les corrélations entre les angles tétraédriques et dièdres sont analysées à partir du modèle de a-Si.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <>, qui s'observe dans les <>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La période postnatale et l’expérience sensorielle sont critiques pour le développement du système visuel. Les interneurones inhibiteurs exprimant l’acide γ-aminobutyrique (GABA) jouent un rôle important dans le contrôle de l’activité neuronale, le raffinement et le traitement de l’information sensorielle qui parvient au cortex cérébral. Durant le développement, lorsque le cortex cérébral est très susceptible aux influences extrinsèques, le GABA agit dans la formation des périodes critiques de sensibilité ainsi que dans la plasticité dépendante de l’expérience. Ainsi, ce système inhibiteur servirait à ajuster le fonctionnement des aires sensorielles primaires selon les conditions spécifiques d’activité en provenance du milieu, des afférences corticales (thalamiques et autres) et de l’expérience sensorielle. Certaines études montrent que des différences dans la densité et la distribution de ces neurones inhibiteurs corticaux reflètent les caractéristiques fonctionnelles distinctes entre les différentes aires corticales. La Parvalbumine (PV), la Calretinine (CR) et la Calbindine (CB) sont des protéines chélatrices du calcium (calcium binding proteins ou CaBPs) localisées dans différentes sous-populations d’interneurones GABAergiques corticaux. Ces protéines tamponnent le calcium intracellulaire de sorte qu’elles peuvent moduler différemment plusieurs fonctions neuronales, notamment l’aspect temporel des potentiels d’action, la transmission synaptique et la potentialisation à long terme. Plusieurs études récentes montrent que les interneurones immunoréactifs (ir) aux CaBPs sont également très sensibles à l’expérience et à l’activité sensorielle durant le développement et chez l’adulte. Ainsi, ces neurones pourraient avoir un rôle crucial à jouer dans le phénomène de compensation ou de plasticité intermodale entre les cortex sensoriels primaires. Chez le hamster (Mesocricetus auratus), l’énucléation à la naissance fait en sorte que le cortex visuel primaire peut être recruté par les autres modalités sensorielles, telles que le toucher et l’audition. Suite à cette privation oculaire, il y a établissement de projections ectopiques permanentes entre les collicules inférieurs (CI) et le corps genouillé latéral (CGL). Ceci a pour effet d’acheminer l’information auditive vers le cortex visuel primaire (V1) durant le développement postnatal. À l’aide de ce modèle, l’objectif général de ce projet de thèse est d’étudier l’influence et le rôle de l’activité sensorielle sur la distribution et l’organisation des interneurones corticaux immunoréactifs aux CaBPs dans les aires sensorielles visuelle et auditive primaires du hamster adulte. Les changements dans l’expression des CaBPs ont été déterminés d’une manière quantitative en évaluant les profils de distribution laminaire de ces neurones révélés par immunohistochimie. Dans une première expérience, nous avons étudié la distribution laminaire des CaBPs dans les aires visuelle (V1) et auditive (A1) primaires chez le hamster normal adulte. Les neurones immunoréactifs à la PV et la CB, mais non à la CR, sont distribués différemment dans ces deux cortex primaires dédiés à une modalité sensorielle différente. Dans une deuxième étude, une comparaison a été effectuée entre des animaux contrôles et des hamsters énucléés à la naissance. Cette étude montre que le cortex visuel primaire de ces animaux adopte une chimioarchitecture en PV similaire à celle du cortex auditif. Nos recherches montrent donc qu’une suppression de l’activité visuelle à la naissance peut influencer l’expression des CaBPs dans l’aire V1 du hamster adulte. Ceci suggère également que le type d’activité des afférences en provenance d’autres modalités sensorielles peut moduler, en partie, une circuiterie corticale en CaBPs qui lui est propre dans le cortex hôte ou recruté. Ainsi, nos travaux appuient l’hypothèse selon laquelle il serait possible que certaines de ces sous-populations d’interneurones GABAergiques jouent un rôle crucial dans le phénomène de la plasticité intermodale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le sujet principal de ce mémoire est l'étude de la distribution asymptotique de la fonction f_m qui compte le nombre de diviseurs premiers distincts parmi les nombres premiers $p_1,...,p_m$. Au premier chapitre, nous présentons les sept résultats qui seront démontrés au chapitre 4. Parmi ceux-ci figurent l'analogue du théorème d'Erdos-Kac et un résultat sur les grandes déviations. Au second chapitre, nous définissons les espaces de probabilités qui serviront à calculer les probabilités asymptotiques des événements considérés, et éventuellement à calculer les densités qui leur correspondent. Le troisième chapitre est la partie centrale du mémoire. On y définit la promenade aléatoire qui, une fois normalisée, convergera vers le mouvement brownien. De là, découleront les résultats qui formeront la base des démonstrations de ceux chapitre 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nous considérons des processus de diffusion, définis par des équations différentielles stochastiques, et puis nous nous intéressons à des problèmes de premier passage pour les chaînes de Markov en temps discret correspon- dant à ces processus de diffusion. Comme il est connu dans la littérature, ces chaînes convergent en loi vers la solution des équations différentielles stochas- tiques considérées. Notre contribution consiste à trouver des formules expli- cites pour la probabilité de premier passage et la durée de la partie pour ces chaînes de Markov à temps discret. Nous montrons aussi que les résultats ob- tenus convergent selon la métrique euclidienne (i.e topologie euclidienne) vers les quantités correspondantes pour les processus de diffusion. En dernier lieu, nous étudions un problème de commande optimale pour des chaînes de Markov en temps discret. L’objectif est de trouver la valeur qui mi- nimise l’espérance mathématique d’une certaine fonction de coût. Contraire- ment au cas continu, il n’existe pas de formule explicite pour cette valeur op- timale dans le cas discret. Ainsi, nous avons étudié dans cette thèse quelques cas particuliers pour lesquels nous avons trouvé cette valeur optimale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

clRNG et clProbdist sont deux interfaces de programmation (APIs) que nous avons développées pour la génération de nombres aléatoires uniformes et non uniformes sur des dispositifs de calculs parallèles en utilisant l’environnement OpenCL. La première interface permet de créer au niveau d’un ordinateur central (hôte) des objets de type stream considérés comme des générateurs virtuels parallèles qui peuvent être utilisés aussi bien sur l’hôte que sur les dispositifs parallèles (unités de traitement graphique, CPU multinoyaux, etc.) pour la génération de séquences de nombres aléatoires. La seconde interface permet aussi de générer au niveau de ces unités des variables aléatoires selon différentes lois de probabilité continues et discrètes. Dans ce mémoire, nous allons rappeler des notions de base sur les générateurs de nombres aléatoires, décrire les systèmes hétérogènes ainsi que les techniques de génération parallèle de nombres aléatoires. Nous présenterons aussi les différents modèles composant l’architecture de l’environnement OpenCL et détaillerons les structures des APIs développées. Nous distinguons pour clRNG les fonctions qui permettent la création des streams, les fonctions qui génèrent les variables aléatoires uniformes ainsi que celles qui manipulent les états des streams. clProbDist contient les fonctions de génération de variables aléatoires non uniformes selon la technique d’inversion ainsi que les fonctions qui permettent de retourner différentes statistiques des lois de distribution implémentées. Nous évaluerons ces interfaces de programmation avec deux simulations qui implémentent un exemple simplifié d’un modèle d’inventaire et un exemple d’une option financière. Enfin, nous fournirons les résultats d’expérimentation sur les performances des générateurs implémentés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selon la philosophie de Katz et Sarnak, la distribution des zéros des fonctions $L$ est prédite par le comportement des valeurs propres de matrices aléatoires. En particulier, le comportement des zéros près du point central révèle le type de symétrie de la famille de fonctions $L$. Une fois la symétrie identifiée, la philosophie de Katz et Sarnak conjecture que plusieurs statistiques associées aux zéros seront modélisées par les valeurs propres de matrices aléatoires du groupe correspondant. Ce mémoire étudiera la distribution des zéros près du point central de la famille des courbes elliptiques sur $\mathbb{Q}[i]$. Brumer a effectué ces calculs en 1992 sur la famille de courbes elliptiques sur $\mathbb{Q}$. Les nouvelles problématiques reliées à la généralisation de ses travaux vers un corps de nombres seront mises en évidence