36 resultados para Prime rational functions
em Université de Montréal, Canada
Resumo:
Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler classique. On améliore un de ces résultats en réduisant une combinaison linéaire de polylogarithmes multiples en termes de valeurs spéciales de fonctions L. On termine avec la réduction complète d’un cas particuler.
Resumo:
The rationalizability of a choice function by means of a transitive relation has been analyzed thoroughly in the literature. However, not much seems to be known when transitivity is weakened to quasi-transitivity or acyclicity. We describe the logical relationships between the different notions of rationalizability involving, for example, the transitivity, quasi-transitivity, or acyclicity of the rationalizing relation. Furthermore, we discuss sufficient conditions and necessary conditions for rational choice on arbitrary domains. Transitive, quasi-transitive, and acyclical rationalizability are fully characterized for domains that contain all singletons and all two-element subsets of the universal set.
Resumo:
Rapport de recherche
Resumo:
Consistency of a binary relation requires any preference cycle to involve indifference only. As shown by Suzumura (1976b), consistency is necessary and sufficient for the existence of an ordering extension of a relation. Because of this important role of consistency, it is of interest to examine the rationalizability of choice functions by means of consistent relations. We describe the logical relationships between the different notions of rationalizability obtained if reflexivity or completeness are added to consistency, both for greatest-element rationalizability and for maximal-element rationalizability. All but one notion of consistent rationalizability are characterized for general domains, and all of them are characterized for domains that contain all two-element subsets of the universal set.
Resumo:
Different Functional Forms Are Proposed and Applied in the Context of Educational Production Functions. Three Different Specifications - the Linerar, Logit and Inverse Power Transformation (Ipt) - Are Used to Explain First Grade Students' Results to a Mathematics Achievement Test. with Ipt Identified As the Best Functional Form to Explain the Data, the Assumption of Differential Impact of Explanatory Variables on Achievement Following the Status of the Student As a Low Or High Achiever Is Retained. Policy Implications of Such Result in Terms of School Interventions Are Discussed in the Paper.
Resumo:
In a linear production model, we characterize the class of efficient and strategy-proof allocation functions, and the class of efficient and coalition strategy-proof allocation functions. In the former class, requiring equal treatment of equals allows us to identify a unique allocation function. This function is also the unique member of the latter class which satisfies uniform treatment of uniforms.
Resumo:
The rationalizability of a choice function on arbitrary domains by means of a transitive relation has been analyzed thoroughly in the literature. Moreover, characterizations of various versions of consistent rationalizability have appeared in recent contributions. However, not much seems to be known when the coherence property of quasi-transitivity or that of P-acyclicity is imposed on a rationalization. The purpose of this paper is to fill this significant gap. We provide characterizations of all forms of rationalizability involving quasi-transitive or P-acyclical rationalizations on arbitrary domains.
Resumo:
The rationalizability of a choice function on an arbitrary domain under various coherence properties has received a considerable amount of attention both in the long-established and in the recent literature. Because domain closedness conditions play an important role in much of rational choice theory, we examine the consequences of these requirements on the logical relationships among different versions of rationalizability. It turns out that closedness under intersection does not lead to any results differing from those obtained on arbitrary domains. In contrast, closedness under union allows us to prove an additional implication.
Resumo:
Rapport de recherche
Resumo:
We analyze infinite-horizon choice functions within the setting of a simple linear technology. Time consistency and efficiency are characterized by stationary consumption and inheritance functions, as well as a transversality condition. In addition, we consider the equity axioms Suppes-Sen, Pigou-Dalton, and resource monotonicity. We show that Suppes-Sen and Pigou-Dalton imply that the consumption and inheritance functions are monotone with respect to time—thus justifying sustainability—while resource monotonicity implies that the consumption and inheritance functions are monotone with respect to the resource. Examples illustrate the characterization results.