7 resultados para Prediction of scholastic success.
em Université de Montréal, Canada
Resumo:
Deux tiers des cancers du sein expriment des récepteurs hormonaux ostrogéniques (tumeur ER-positive) et la croissance de ces tumeurs est stimulée par l’estrogène. Des traitements adjuvant avec des anti-estrogènes, tel que le Tamoxifen et les Inhibiteurs de l’Aromatase peuvent améliorer la survie des patientes atteinte de cancer du sein. Toutefois la thérapie hormonale n’est pas efficace dans toutes les tumeurs mammaires ER-positives. Les tumeurs peuvent présenter avec une résistance intrinsèque ou acquise au Tamoxifen. Présentement, c’est impossible de prédire quelle patiente va bénéficier ou non du Tamoxifen. Des études préliminaires du laboratoire de Dr. Mader, ont identifié le niveau d’expression de 20 gènes, qui peuvent prédire la réponse thérapeutique au Tamoxifen (survie sans récidive). Ces marqueurs, identifié en utilisant une analyse bioinformatique de bases de données publiques de profils d’expression des gènes, sont capables de discriminer quelles patientes vont mieux répondre au Tamoxifen. Le but principal de cette étude est de développer un outil de PCR qui peut évaluer le niveau d’expression de ces 20 gènes prédictif et de tester cette signature de 20 gènes dans une étude rétrospective, en utilisant des tumeurs de cancer du sein en bloc de paraffine, de patients avec une histoire médicale connue. Cet outil aurait donc un impact direct dans la pratique clinique. Des traitements futiles pourraient être éviter et l’indentification de tumeurs ER+ avec peu de chance de répondre à un traitement anti-estrogène amélioré. En conséquence, de la recherche plus appropriée pour les tumeurs résistantes au Tamoxifen, pourront se faire.
Resumo:
Le trouble du déficit de l’attention/hyperactivité (TDA/H) est un des troubles comportementaux le plus commun chez les enfants. TDAH a une étiologie complexe et des traitements efficaces. Le médicament le plus prescrit est le méthylphénidate, un psychostimulant qui bloque le transporteur de la dopamine et augmente la disponibilité de la dopamine dans la fente synaptique. Des études précliniques et cliniques suggèrent que le cortisol peut potentialiser les effets de la dopamine. Un dysfonctionnement du système hypothalamo-hypophyso-surrénalien (HHS) est associé avec plusieurs maladies psychiatriques comme la dépression, le trouble bipolaire, et l’anxiété. Nous avons fait l’hypothèse que le cortisol influence l’efficacité du traitement des symptômes du TDAH par le méthylphénidate. L’objectif de cette étude est de mesurer les niveaux de cortisol le matin au réveil et en réponse à une prise de sang dans un échantillon d’enfants diagnostiqué avec TDAH âgé de 8 ans. Le groupe était randomisé dans un protocole en chassé croisé et en double aveugle avec trois doses de méthylphénidate et un placebo pour une période de quatre semaines. Les enseignants et les parents ont répondu aux questionnaires SWAN et à une échelle d’évaluation des effets secondaires. Les résultats ont démontrés qu’un niveau de cortisol élevé au réveil prédit les sujets qui ne répondent pas au traitement du TDAH, si on se fie aux rapports des parents. En plus, la réactivité au stress élevé suggère un bénéfice additionnel d’une dose élevée de méthylphénidate selon les enseignants. Aussi, les parents rapportent une association entre la présence de troubles anxieux co-morbide avec le TDAH et une meilleure réponse à une dose élevée. Cette étude suggère qu’une forte réactivité de l’axe HHS améliore la réponse clinique à des doses élevées, mais qu’une élévation chronique du niveau de cortisol pourrait être un marqueur pour les non répondeurs. Les résultats de cette étude doivent être considérés comme préliminaires et nécessitent des tests plus approfondis des interactions possibles entre les médicaments utilisés pour traiter le TDAH et l’axe HHS.
Resumo:
Objectif: Évaluer l'efficacité du dépistage de l’hypertension gestationnelle par les caractéristiques démographiques maternelles, les biomarqueurs sériques et le Doppler de l'artère utérine au premier et au deuxième trimestre de grossesse. Élaborer des modèles prédictifs de l’hypertension gestationnelle fondées sur ces paramètres. Methods: Il s'agit d'une étude prospective de cohorte incluant 598 femmes nullipares. Le Doppler utérin a été étudié par échographie transabdominale entre 11 +0 à 13 +6 semaines (1er trimestre) et entre 17 +0 à 21 +6 semaines (2e trimestre). Tous les échantillons de sérum pour la mesure de plusieurs biomarqueurs placentaires ont été recueillis au 1er trimestre. Les caractéristiques démographiques maternelles ont été enregistrées en même temps. Des courbes ROC et les valeurs prédictives ont été utilisés pour analyser la puissance prédictive des paramètres ci-dessus. Différentes combinaisons et leurs modèles de régression logistique ont été également analysés. Résultats: Parmi 598 femmes, on a observé 20 pré-éclampsies (3,3%), 7 pré-éclampsies précoces (1,2%), 52 cas d’hypertension gestationnelle (8,7%) , 10 cas d’hypertension gestationnelle avant 37 semaines (1,7%). L’index de pulsatilité des artères utérines au 2e trimestre est le meilleur prédicteur. En analyse de régression logistique multivariée, la meilleure valeur prédictive au 1er et au 2e trimestre a été obtenue pour la prévision de la pré-éclampsie précoce. Le dépistage combiné a montré des résultats nettement meilleurs comparés avec les paramètres maternels ou Doppler seuls. Conclusion: Comme seul marqueur, le Doppler utérin du deuxième trimestre a la meilleure prédictive pour l'hypertension, la naissance prématurée et la restriction de croissance. La combinaison des caractéristiques démographiques maternelles, des biomarqueurs sériques maternels et du Doppler utérin améliore l'efficacité du dépistage, en particulier pour la pré-éclampsie nécessitant un accouchement prématuré.
Resumo:
Understanding how stem and progenitor cells choose between alternative cell fates is a major challenge in developmental biology. Efforts to tackle this problem have been hampered by the scarcity of markers that can be used to predict cell division outcomes. Here we present a computational method, based on algorithmic information theory, to analyze dynamic features of living cells over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display characteristic phenotypes before undergoing mitosis that could foretell their fate. We predicted whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or whether they will produce two photoreceptors or another combination of offspring with 87% accuracy. Our implementation can segment, track and generate predictions for 40 cells simultaneously on a standard computer at 5 min per frame. This method could be used to isolate cell populations with specific developmental potential, enabling previously impossible investigations.
Resumo:
La fibrillation auriculaire (FA) est une arythmie touchant les oreillettes. En FA, la contraction auriculaire est rapide et irrégulière. Le remplissage des ventricules devient incomplet, ce qui réduit le débit cardiaque. La FA peut entraîner des palpitations, des évanouissements, des douleurs thoraciques ou l’insuffisance cardiaque. Elle augmente aussi le risque d'accident vasculaire. Le pontage coronarien est une intervention chirurgicale réalisée pour restaurer le flux sanguin dans les cas de maladie coronarienne sévère. 10% à 65% des patients qui n'ont jamais subi de FA, en sont victime le plus souvent lors du deuxième ou troisième jour postopératoire. La FA est particulièrement fréquente après une chirurgie de la valve mitrale, survenant alors dans environ 64% des patients. L'apparition de la FA postopératoire est associée à une augmentation de la morbidité, de la durée et des coûts d'hospitalisation. Les mécanismes responsables de la FA postopératoire ne sont pas bien compris. L'identification des patients à haut risque de FA après un pontage coronarien serait utile pour sa prévention. Le présent projet est basé sur l'analyse d’électrogrammes cardiaques enregistrées chez les patients après pontage un aorte-coronaire. Le premier objectif de la recherche est d'étudier si les enregistrements affichent des changements typiques avant l'apparition de la FA. Le deuxième objectif est d'identifier des facteurs prédictifs permettant d’identifier les patients qui vont développer une FA. Les enregistrements ont été réalisés par l'équipe du Dr Pierre Pagé sur 137 patients traités par pontage coronarien. Trois électrodes unipolaires ont été suturées sur l'épicarde des oreillettes pour enregistrer en continu pendant les 4 premiers jours postopératoires. La première tâche était de développer un algorithme pour détecter et distinguer les activations auriculaires et ventriculaires sur chaque canal, et pour combiner les activations des trois canaux appartenant à un même événement cardiaque. L'algorithme a été développé et optimisé sur un premier ensemble de marqueurs, et sa performance évaluée sur un second ensemble. Un logiciel de validation a été développé pour préparer ces deux ensembles et pour corriger les détections sur tous les enregistrements qui ont été utilisés plus tard dans les analyses. Il a été complété par des outils pour former, étiqueter et valider les battements sinusaux normaux, les activations auriculaires et ventriculaires prématurées (PAA, PVA), ainsi que les épisodes d'arythmie. Les données cliniques préopératoires ont ensuite été analysées pour établir le risque préopératoire de FA. L’âge, le niveau de créatinine sérique et un diagnostic d'infarctus du myocarde se sont révélés être les plus importants facteurs de prédiction. Bien que le niveau du risque préopératoire puisse dans une certaine mesure prédire qui développera la FA, il n'était pas corrélé avec le temps de l'apparition de la FA postopératoire. Pour l'ensemble des patients ayant eu au moins un épisode de FA d’une durée de 10 minutes ou plus, les deux heures précédant la première FA prolongée ont été analysées. Cette première FA prolongée était toujours déclenchée par un PAA dont l’origine était le plus souvent sur l'oreillette gauche. Cependant, au cours des deux heures pré-FA, la distribution des PAA et de la fraction de ceux-ci provenant de l'oreillette gauche était large et inhomogène parmi les patients. Le nombre de PAA, la durée des arythmies transitoires, le rythme cardiaque sinusal, la portion basse fréquence de la variabilité du rythme cardiaque (LF portion) montraient des changements significatifs dans la dernière heure avant le début de la FA. La dernière étape consistait à comparer les patients avec et sans FA prolongée pour trouver des facteurs permettant de discriminer les deux groupes. Cinq types de modèles de régression logistique ont été comparés. Ils avaient une sensibilité, une spécificité et une courbe opérateur-receveur similaires, et tous avaient un niveau de prédiction des patients sans FA très faible. Une méthode de moyenne glissante a été proposée pour améliorer la discrimination, surtout pour les patients sans FA. Deux modèles ont été retenus, sélectionnés sur les critères de robustesse, de précision, et d’applicabilité. Autour 70% patients sans FA et 75% de patients avec FA ont été correctement identifiés dans la dernière heure avant la FA. Le taux de PAA, la fraction des PAA initiés dans l'oreillette gauche, le pNN50, le temps de conduction auriculo-ventriculaire, et la corrélation entre ce dernier et le rythme cardiaque étaient les variables de prédiction communes à ces deux modèles.
Resumo:
One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.
Resumo:
Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.