38 resultados para Polynomial Invariants

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit p un polynôme d'une variable complexe z. On peut trouver plusieurs inégalités reliant le module maximum de p et une combinaison de ses coefficients. Dans ce mémoire, nous étudierons principalement les preuves connues de l'inégalité de Visser. Nous montrerons aussi quelques généralisations de cette inégalité. Finalement, nous obtiendrons quelques applications de l'inégalité de Visser à l'inégalité de Chebyshev.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le roman sentimental est un des genres les plus lus, les plus traduits et les plus diffusés. Malgré sa mauvaise réputation, il est étonnant de constater le nombre de ces romans vendus, tous pays confondus. Dans les Antilles, ce phénomène est particulièrement palpable : la présence, et la réception de ces œuvres témoignent de l’engouement pour le genre. Notre étude a pour objectif de dégager d’un corpus sentimental antillais les aspects les plus significatifs. Nous analyserons, d’une part, le schéma narratif élaboré en marge de celui proposé par le roman sentimental classique et, d’autre part, l’esthétique du quotidien mise en place pour créer un sentiment d’appartenance chez le lectorat. Il nous sera ainsi possible de mettre en évidence le discours socioculturel propre à ce genre et plus spécifiquement aux femmes antillaises. Par ailleurs, cette recherche postule que l'appropriation des invariants romanesques et l'élaboration d'une visée didactique participent à l'intégration du roman sentimental antillais dans la sphère des littératures « sérieuses ». Enfin, ce mémoire défend l’idée selon laquelle l’écriture romanesque des auteures étudiées contribue au projet littéraire antillais de réappropriation identitaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse pose la question de la fortune remarquable du surréalisme en Belgique et porte particulièrement attention à la poétique de Christian Dotremont qui, après une période surréaliste, trace le premier logogramme en 1962. La partie initiale de notre recherche interroge ses rapports avec le groupe surréaliste bruxellois (Paul Nougé et René Magritte), préoccupé par le refus de l’œuvre. Cette démarche subversive se transforme dans l’art expérimental du groupe Cobra (communauté artistique fondée en 1948 par Dotremont). Nous nous intéressons à cette évolution d’une préoccupation logocentrique (où le mot compte pour le contenu qu’il véhicule : il s’agit de la poétique « primitive » de Nougé et des objets bouleversants de Magritte) vers l’exploration du mot comme trace, comme scription et, par là même, comme source de poésie. La deuxième partie de notre recherche traite de l’époque Cobra où se forge ce que nous appelons la poétique du visible chez Dotremont dont le résultat est la découverte du pouvoir créatif du mot en tant que matière, en tant que trace manuscrite. Ces expérimentations centrées sur la matérialité du langage préparent le cheminement artistique de Dotremont vers l’invention du logogramme (objet d’analyse de la troisième partie de la thèse). Dans l’idée d’une légitimation du logogramme en tant que nouveau genre poético-pictural, nous relevons ses invariants créateurs : sans pour autant se soumettre au modèle pictural, celui-ci n’est ni peinture des mots, ni mot-tableau, il exploite la matérialité de la lettre comme source poétique : genre transfrontalier qui ne cesse de mettre en question et d’inclure dans sa cinétique la métamorphose de sa réception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous développons ainsi deux mécanismes permettant de conclure qu’un point singulier monodromique dans ce système non-linéaire polynomial est un centre. Le premier mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques invariantes dans la construction d’une intégrale première. La deuxième méthode analyse la réversibilité algébrique ou analytique du système. Un système possédant une singularité monodromique et étant algébriquement ou analytiquement réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss généralisé avec récolte de proies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un circuit arithmétique dont les entrées sont des entiers ou une variable x et dont les portes calculent la somme ou le produit représente un polynôme univarié. On assimile la complexité de représentation d'un polynôme par un circuit arithmétique au nombre de portes multiplicatives minimal requis pour cette modélisation. Et l'on cherche à obtenir une borne inférieure à cette complexité, et cela en fonction du degré d du polynôme. A une chaîne additive pour d, correspond un circuit arithmétique pour le monôme de degré d. La conjecture de Strassen prétend que le nombre minimal de portes multiplicatives requis pour représenter un polynôme de degré d est au moins la longueur minimale d'une chaîne additive pour d. La conjecture de Strassen généralisée correspondrait à la même proposition lorsque les portes du circuit arithmétique ont degré entrant g au lieu de 2. Le mémoire consiste d'une part en une généralisation du concept de chaînes additives, et une étude approfondie de leur construction. On s'y intéresse d'autre part aux polynômes qui peuvent être représentés avec très peu de portes multiplicatives (les d-gems). On combine enfin les deux études en lien avec la conjecture de Strassen. On obtient en particulier de nouveaux cas de circuits vérifiant la conjecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse est composée de trois articles en économie des ressources naturelles non-renouvelables. Nous considérons tour à tour les questions suivantes : le prix in-situ des ressources naturelles non-renouvelables ; le taux d’extraction optimal et le prix des res- sources non-renouvelables et durables. Dans le premier article, nous estimons le prix in-situ des ressources naturelles non-renouvelables en utilisant les données sur le coût moyen d’extraction pour obtenir une approximation du coût marginal. En utilisant la Méthode des Moments Généralisés, une dynamique du prix de marché derivée des conditions d’optimalité du modèle d’Hotelling est estimée avec des données de panel de 14 ressources naturelles non-renouvelables. Nous trouvons des résultats qui tendent à soutenir le modèle. Premièrement, le modèle d’Hotelling exhibe un bon pouvoir explicatif du prix de marché observé. Deuxièmement, bien que le prix estimé présente un changement structurel dans le temps, ceci semble n’avoir aucun impact significatif sur le pouvoir explicatif du modèle. Troisièmement, on ne peut pas rejeter l’hypothèse que le coût marginal d’extraction puisse être approximé par les données sur le coût moyen. Quatrièmement, le prix in-situ estimé en prenant en compte les changements structurels décroît ou exhibe une forme en U inversé dans le temps et semble être corrélé positivement avec le prix de marché. Cinquièmement, pour neuf des quatorze ressources, la différence entre le prix in-situ estimé avec changements structurels et celui estimé en négligeant les changements structurels est un processus de moyenne nulle. Dans le deuxième article, nous testons l’existence d’un équilibre dans lequel le taux d’extraction optimal des ressources non-renouvelables est linéaire par rapport au stock de ressource en terre. Tout d’abord, nous considérons un modèle d’Hotelling avec une fonction de demande variant dans le temps caractérisée par une élasticité prix constante et une fonction de coût d’extraction variant dans le temps caractérisée par des élasticités constantes par rapport au taux d’extraction et au stock de ressource. Ensuite, nous mon- trons qu’il existe un équilibre dans lequel le taux d’extraction optimal est proportionnel au stock de ressource si et seulement si le taux d’actualisation et les paramètres des fonctions de demande et de coût d’extraction satisfont une relation bien précise. Enfin, nous utilisons les données de panel de quatorze ressources non-renouvelables pour vérifier empiriquement cette relation. Dans le cas où les paramètres du modèle sont supposés invariants dans le temps, nous trouvons qu’on ne peut rejeter la relation que pour six des quatorze ressources. Cependant, ce résultat change lorsque nous prenons en compte le changement structurel dans le temps des prix des ressources. En fait, dans ce cas nous trouvons que la relation est rejetée pour toutes les quatorze ressources. Dans le troisième article, nous étudions l’évolution du prix d’une ressource naturelle non-renouvelable dans le cas où cette ressource est durable, c’est-à-dire qu’une fois extraite elle devient un actif productif détenu hors terre. On emprunte à la théorie de la détermination du prix des actifs pour ce faire. Le choix de portefeuille porte alors sur les actifs suivant : un stock de ressource non-renouvelable détenu en terre, qui ne procure aucun service productif ; un stock de ressource détenu hors terre, qui procure un flux de services productifs ; un stock d’un bien composite, qui peut être détenu soit sous forme de capital productif, soit sous forme d’une obligation dont le rendement est donné. Les productivités du secteur de production du bien composite et du secteur de l’extraction de la ressource évoluent de façon stochastique. On montre que la prédiction que l’on peut tirer quant au sentier de prix de la ressource diffère considérablement de celle qui découle de la règle d’Hotelling élémentaire et qu’aucune prédiction non ambiguë quant au comportement du sentier de prix ne peut être obtenue de façon analytique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.