2 resultados para Polydimethylsiloxane Pdms
em Université de Montréal, Canada
Resumo:
L'élongation cellulaire de cellules cultivant bout comme hyphae fongueux, inculquez hairs, des tubes de pollen et des neurones, est limité au bout de la cellule, qui permet à ces cellules d'envahir l'encerclement substrate et atteindre une cible. Les cellules cultivant bout d'équipement sont entourées par le mur polysaccharide rigide qui régule la croissance et l'élongation de ces cellules, un mécanisme qui est radicalement différent des cellules non-walled. La compréhension du règlement du mur de cellule les propriétés mécaniques dans le contrôle de la croissance et du fonctionnement cellulaire du tube de pollen, une cellule rapidement grandissante d'équipement, est le but de ce projet. Le tube de pollen porte des spermatozoïdes du grain de pollen à l'ovule pour la fertilisation et sur sa voie du stigmate vers l'ovaire le tube de pollen envahit physiquement le stylar le tissu émettant de la fleur. Pour atteindre sa cible il doit aussi changer sa direction de croissance les temps multiples. Pour évaluer la conduite de tubes de pollen grandissants, un dans le système expérimental vitro basé sur la technologie de laboratoire-sur-fragment (LOC) et MEMS (les systèmes micro-électromécaniques) ont été conçus. En utilisant ces artifices nous avons mesuré une variété de propriétés physiques caractérisant le tube de pollen de Camélia, comme la croissance la croissance accélérée, envahissante et dilatant la force. Dans une des organisations expérimentales les tubes ont été exposés aux ouvertures en forme de fente faites de l'élastique PDMS (polydimethylsiloxane) la matière nous permettant de mesurer la force qu'un tube de pollen exerce pour dilater la croissance substrate. Cette capacité d'invasion est essentielle pour les tubes de pollen de leur permettre d'entrer dans les espaces intercellulaires étroits dans les tissus pistillar. Dans d'autres essais nous avons utilisé l'organisation microfluidic pour évaluer si les tubes de pollen peuvent s'allonger dans l'air et s'ils ont une mémoire directionnelle. Une des applications auxquelles le laboratoire s'intéresse est l'enquête de processus intracellulaires comme le mouvement d'organelles fluorescemment étiqueté ou les macromolécules pendant que les tubes de pollen grandissent dans les artifices LOC. Pour prouver que les artifices sont compatibles avec la microscopie optique à haute résolution et la microscopie de fluorescence, j'ai utilisé le colorant de styryl FM1-43 pour étiqueter le système endomembrane de tubes de pollen de cognassier du Japon de Camélia. L'observation du cône de vésicule, une agrégation d'endocytic et les vésicules exocytic dans le cytoplasme apical du bout de tube de pollen, n'a pas posé de problèmes des tubes de pollen trouvés dans le LOC. Pourtant, le colorant particulier en question a adhéré au sidewalls du LOC microfluidic le réseau, en faisant l'observation de tubes de pollen près du difficile sidewalls à cause du signal extrêmement fluorescent du mur. Cette propriété du colorant pourrait être utile de refléter la géométrie de réseau en faisant marcher dans le mode de fluorescence.
Resumo:
La morphologie des couches actives des cellules solaires organiques joue un rôle important sur l’efficacité de conversion de l’énergie solaire en énergie électrique de ces dispositifs. Les hétérojonctions planaires et les hétérojonctions en volume sont les plus communément utilisées. Cependant, la morphologie idéale pour l’efficacité se situerait à mis chemin entre celles-ci. Il s’agit de l’hétérojonction nanostructurée qui augmenterait la surface entre les couches actives de matériaux tout en favorisant le transport des porteurs de charge. L’objectif de ce projet de maîtrise est d’étudier l’impact de l’implantation de nanostructures dans les cellules solaires organiques sur leurs performances photovoltaïques. Pour ce faire, on utilise la méthode de nanoimpression thermique sur le matériau donneur, le P3HT, afin que celui-ci forme une interface nanostructurée avec le matériau accepteur, le PCBM. Pour effectuer les nanoimpressions, des moules en alumine nanoporeuse ont été fabriqués à l’aide du procédé d’anodisation en deux temps développé par Masuda et al. Ces moules ont subi un traitement afin de faciliter leur séparation du P3HT. Les agents antiadhésifs PDMS et FTDS ont été utilisés à cette fin. Les résultats obtenus témoignent de la complexité d’exécution du procédé de nanoimpression. Il a été démontré que la pression appliquée durant le procédé, la tension superficielle des éléments en contact et les dimensions des nanopores des moules sont des paramètres critiques pour le succès des nanoimpressions. Ceux-ci ont donc dû être optimisés de manière à réussir cette opération. Ainsi, des cellules à interface nanostructurée à 25% avec des nanobâtonnets de 35 nm de hauteur ont pu être fabriquées. Les cellules nanostructurées ont démontré une efficacité 2,3 ± 0,6 fois supérieure aux cellules sans nanostructures, dites planaires. D’autre part, un solvant a été proposé pour diminuer l’interdiffusion entre les couches de P3HT et de PCBM pouvant altérer les nanostructures. Ce phénomène bien connu survient lors du dépot de la couche de PCBM avec le dichlorométhane, un solvant orthogonal avec ces matériaux. Des mesures au TOF-SIMS ont démontré que le limonène permet de diminuer l’interdiffusion entre les couches de P3HT et de PCBM, ce qui en fait un meilleur solvant orthogonal que le dichlorométhane.