19 resultados para Poly(epsilon-caprolactone)-epoxy blends
em Université de Montréal, Canada
Resumo:
L’électrofilage est un procédé permettant de préparer des fibres possédant un diamètre de l’ordre du micromètre ou de quelques centaines de nanomètres. Son utilisation est toutefois limitée par le manque de contrôle sur la structure et les propriétés des fibres ainsi produites. Dans ce travail, des fibres électrofilées à partir de mélanges de polystyrène (PS) et de poly(vinyl méthyl éther) (PVME) ont été caractérisées. La calorimétrie différentielle à balayage (DSC) a montré que les fibres du mélange PS/PVME sont miscibles (une seule transition vitreuse) lorsque préparées dans le benzène, alors qu'une séparation de phases a lieu lorsque le chloroforme est utilisé. Les fibres immiscibles sont néanmoins malléables, contrairement à un film préparé par évaporation du chloroforme qui a des propriétés mécaniques médiocres. Des clichés en microscopies optique et électronique à balayage (MEB) ont permis d’étudier l'effet de la composition et du solvant sur le diamètre et la morphologie des fibres. Des mesures d’angles de contact ont permis d’évaluer l’hydrophobicité des fibres, qui diminue avec l’ajout de PVME (hydrophile); les valeurs sont de 60° supérieures à celles des films de composition équivalente. Un retrait sélectif du PVME a été réalisé par l’immersion des fibres dans l’eau. La spectroscopie infrarouge a montré que la composition passe de 70 à 95% de PS pour une fibre immiscible mais seulement à 75% pour une fibre miscible. Ces résultats indiquent que la phase riche en PVME se situe presque uniquement à la surface des fibres immiscibles, ce qui a été confirmé par microscopie à force atomique (AFM) et MEB. Finalement, l’effet du mélange des deux solvants, lors de l’électrofilage du mélange PS/PVME, a été étudié. La présence du chloroforme, même en quantité réduite, provoque une séparation de phases similaire à celle observée avec ce solvant pur.
Resumo:
Des ligands diketimines porteurs de substituants N-benzyl, N-9-anthrylmethyl et N-mesitylmethyl (nacnacBnH, nacnacAnH, and nacnacMesH) ont été synthétisés par condensation d’une amine et d’acétyl acétone ou son monoacétal d’éthylène glycol. La chlorination de la position 3 a été effectuée à l’aide de N-chlorosuccinimide conduisant à la formation des ligands ClnacnacBnH et ClnacnacAnH. Cette même position 3 a également été substituée par un groupement succinimide par lithiation du nacnacBnH, suivi de la réaction avec le N-chlorosuccinimide (3-succinimido-nacnacBnH). Les ligands N-aryl nacnacippH et nacnacNaphH (ipp = 2-isopropylphenyl, Naph = 1-naphthyl) ont été préparés selon les procédures reportées dans la littérature. La réaction de ces ligands avec Zn(TMSA)2 (TMSA = N(SiMe3)2) conduit à la formation des complexes nacnacAnZn(TMSA) et ClnacnacBnZn(TMSA). La protonation avec l’isopropanol permet l’obtention des complexes nacnacAnZnOiPr et ClnacnacBnZnOiPr. La réaction avec Mg(TMSA)2 permet quant à elle la formation des complexes nacnacAnMg(TMSA), nacnacMesMg(TMSA), ClnacnacBnMg(TMSA) et ClnacnacAnMg(TMSA). La protonation subséquente à l’aide du tert-butanol permet l’obtention du nacnacMesMgOtBu et du ClnacnacBnMgOtBu, alors que l’on observe uniquement une décomposition avec les ligands possédant des substituants N-anthrylmethyl. La réaction de ces diketimines avec Cu(OiPr)2 conduit aux dimères hétéroleptiques [nacnacBnCu(μ-OiPr)]2 et [3-Cl-nacnacBnCu(μ-OiPr)]2 lors de l’usage des ligands stériquement peu encombrés. Lors de l’utilisation de ligands plus encombrés, la stabilisation du complexe hétéroleptique par dimérisation n’est plus possible, conduisant, par un échange de ligand, à la formation des complexes homoleptiques Cu(nacnacipp)2 et Cu(nacnacNaph)2. Les complexes homoleptiques Cu(nacnacBn)2 et Cu(3-succinimido-nacnacBn)2 ont été obtenus à partir des ligands N-benzyl. Les ligands encore plus encombrés tels que nacnacAnH, nacnacMesH ou ceux comportant des substituants N-methylbenzyl ne présentent alors plus de réactivité avec le Cu(OiPr)2. La plupart des complexes ont été caractérisés par Diffraction des Rayons X. Les complexes homoleptiques ainsi que ceux de TMSA sont monomériques, alors que ceux formés à partir d’alkoxides se présentent sous forme de dimères à l’état solide. Tous les complexes d’alkoxides ainsi que les nacnacAnMg(TMSA)/BnOH et ClnacnacAnMg(TMSA)/BnOH présentent une réactivité modérée à haute en matière de polymérisation du rac-lactide (90% de conversion en 30 secondes à 3 heures). Le nacnacAnZnOiPr permet la synthèse d’un polymère hautement hétérotactique (Pr = 0.90) quand le ClnacnacBnMgOtBu/BnOH génère un polymère isotactique à -30°C (Pr = 0.43). Tous les autres catalyseurs produisent des polymères atactiques avec une légère tendance hétérotactique (Pr = 0.48 – 0.55). Les complexes hétéroleptiques [nacnacBnCu(μ-OiPr)]2 et [3-Cl-nacnacBnCu(μ-OiPr)]2 se révèlent être de très bons catalyseurs pour la polymérisation du rac-lactide présentant une conversion complète du monomère à température ambiante, en solution, en 0,5 à 5 minutes. Le [nacnacBnCu(μ-OiPr)]2 est actif en présence ou absence d’isopropanol, agissant comme agent de transfert de chaine à haute activité (k2 = 32 M–1•s–1) dans le dichlorométhane. Dans l’acétonitrile, le THF, le dichloromethane et le toluène, [nacnacBnCu(μ-OiPr)]2 conduit à une étroite polydispersité, possédant respectivement des kobs = 2.4(1), 5.3(5), 3.6-4.4 and 10(1) min–1. Aucune réaction parasite, telle qu’une trans-esterification, une épimerisation ou une décomposition du catalyseur, n’a été observée. Les complexes homoleptiques en présence d’alcool libre semblent présenter un équilibre avec une petite quantité de leurs équivalents hétéroleptiques, permettant une polymérisation complète, en moins de 60 min, à température ambiante. Tous les catalyseurs de cuivre présentent un haut contrôle de la polymérisation avec une polydispersité égale ou inférieure à 1.1. Les polymères obtenus sont essentiellement atactiques, avec une légère tendance à l’hétérotacticité à température ambiante et -17°C. Le [nacnacBnCu(μ-OiPr)]2 polymérise également la -butyrolactone (BL), l’-caprolactone (CL) et la -valerolactone (VL) avec des constantes respectivement égales à kobs = 3.0(1)•10–2, 1.2–2.7•10–2, et 0.11(1) min–1. Les homopolymères présentent une étroite polydispersité d’approximativement 1.1. Les polymérisations par addition séquentielle ont mis en évidence une trans-estérification (non observée dans les homopolymérisations) si BL ou CL sont introduits après un bloc lactide.
Resumo:
Le poly(1,3-dioxolanne) (PDOL) est un polymère semi-cristallin présentant à l’état solide quatre morphologies différentes (Phases I, IIa, IIb et III). Les transformations d'une phase à l'autre ont été suivies par microscopie optique polarisée (MOP) et microscopie à force atomique (AFM) en fonction de la température de cristallisation et de la masse molaire. La Phase I présente une morphologie sphérolitique tandis que la Phase IIa peut croître à partir de la Phase I ou spontanément. De façon inattendue, la Phase IIa, devient très biréfringente et cette nouvelle morphologie est appelée Phase IIb. Quand la transformation IIa-IIb est terminée, une nouvelle phase, la Phase III, croît à partir de la Phase IIb. La Phase III n'a jamais été observée sans la présence de Phase IIb; en outre, la Phase IIb remplace toujours la Phase IIa. Ce phénomène est appelé germination croisée. La mesure de la température de fusion des phases par MOP a permis d’établir leur stabilité relative: IIb > III >IIa. La vitesse de croissance (G) des sphérolites a été mesurée sur une plage de températures de 10,0 à 24,0 °C et montre une grande dépendance avec la masse molaire. Ces mesures ont révélé l’existence d’une masse molaire critique, autour de 5000 g.mol-1, en-dessous de laquelle nous avons observé GIIa > GIII et au-dessus de laquelle la relation est inversée avec GIII > GIIa. Finalement, nous avons exploré l’influence de l’ajout d’un deuxième polymère amorphe sur l’évolution des phases optiques dans des mélanges PDOL-PMMA, PDOL-PVC et PDOL-PVAc. Nous avons observé les mêmes transitions de phases que pour le PDOL pur et un certain degré de compatibilité dans le cas du PDOL-PMMA et du PDOL-PVC.
Resumo:
Les travaux de recherche présentés ici avaient pour objectif principal la synthèse de copolymères statistiques à base d’éthylène et d’acide acrylique (AA). Pour cela, la déprotection des groupements esters d’un copolymère statistique précurseur, le poly(éthylène-co-(tert-butyl)acrylate), a été effectuée par hydrolyse à l’aide d’iodure de triméthylsilyle. La synthèse de ce précurseur est réalisée par polymérisation catalytique en présence d’un système à base de Palladium (Pd). Le deuxième objectif a été d’étudier et de caractériser des polymères synthétisés à l’état solide et en suspension colloïdale. Plusieurs copolymères précurseurs comprenant différents pourcentages molaires en tert-butyl acrylate (4 à 12% molaires) ont été synthétisés avec succès, puis déprotégés par hydrolyse pour obtenir des poly(éthylène-coacide acrylique) (pE-co-AA) avec différentes compositions. Seuls les copolymères comprenant 10% molaire ou plus de AA sont solubles dans le Tétrahydrofurane (THF) et uniquement dans ce solvant. De telles solutions peuvent être dialysées dans l’eau, ce qui conduit à un échange lent entre cette dernière et le THF, et l’autoassemblage du copolymère dans l’eau peut ensuite être étudié. C’est ainsi qu’ont pu être observées des nanoparticules stables dans le temps dont le comportement est sensible au pH et à la température. Les polymères synthétisés ont été caractérisés par Résonance Magnétique Nucléaire (RMN) ainsi que par spectroscopie Infra-Rouge (IR), avant et après déprotection. Les pourcentages molaires d’AA ont été déterminés par combinaison des résultats de RMN et ii de titrages conductimètriques. A l’état solide, les échantillons ont été analysés par Calorimétrie différentielle à balayage (DSC) et par Diffraction des rayons X. Les solutions colloïdales des polymères pE-co-AA ont été caractérisées par Diffusion dynamique de la lumière et par la DSC-haute sensibilité. De la microscopie électronique à transmission (TEM) a permis de visualiser la forme et la taille des nanoparticules.
Resumo:
Les nanoparticules polymériques biodégradable (NPs) sont apparues ces dernières années comme des systèmes prometteurs pour le ciblage et la libération contrôlée de médicaments. La première partie de cette étude visait à développer des NPs biodégradables préparées à partir de copolymères fonctionnalisés de l’acide lactique (poly (D,L)lactide ou PLA). Les polymères ont été étudiés comme systèmes de libération de médicaments dans le but d'améliorer les performances des NPs de PLA conventionnelles. L'effet de la fonctionnalisation du PLA par insertion de groupements chimiques dans la chaîne du polymère sur les propriétés physico-chimiques des NPs a été étudié. En outre, l'effet de l'architecture du polymère (mode d'organisation des chaînes de polymère dans le copolymère obtenu) sur divers aspects de l’administration de médicament a également été étudié. Pour atteindre ces objectifs, divers copolymères à base de PLA ont été synthétisés. Plus précisément il s’agit de 1) copolymères du poly (éthylène glycol) (PEG) greffées sur la chaîne de PLA à 2.5% et 7% mol. / mol. de monomères d'acide lactique (PEG2.5%-g-PLA et PEG7%-g-PLA, respectivement), 2) des groupements d’acide palmitique greffés sur le squelette de PLA à une densité de greffage de 2,5% (palmitique acid2.5%-g-PLA), 3) de copolymère « multibloc » de PLA et de PEG, (PLA-PEG-PLA)n. Dans la deuxième partie, l'effet des différentes densités de greffage sur les propriétés des NPs de PEG-g-PLA (propriétés physico-chimiques et biologiques) a été étudié pour déterminer la densité optimale de greffage PEG nécessaire pour développer la furtivité (« long circulating NPs »). Enfin, les copolymères de PLA fonctionnalisé avec du PEG ayant montré les résultats les plus satisfaisants en regard des divers aspects d’administration de médicaments, (tels que taille et de distribution de taille, charge de surface, chargement de drogue, libération contrôlée de médicaments) ont été sélectionnés pour l'encapsulation de l'itraconazole (ITZ). Le but est dans ce cas d’améliorer sa solubilité dans l'eau, sa biodisponibilité et donc son activité antifongique. Les NPs ont d'abord été préparées à partir de copolymères fonctionnalisés de PLA, puis ensuite analysés pour leurs paramètres physico-chimiques majeurs tels que l'efficacité d'encapsulation, la taille et distribution de taille, la charge de surface, les propriétés thermiques, la chimie de surface, le pourcentage de poly (alcool vinylique) (PVA) adsorbé à la surface, et le profil de libération de médicament. L'analyse de la chimie de surface par la spectroscopie de photoélectrons rayon X (XPS) et la microscopie à force atomique (AFM) ont été utilisés pour étudier l'organisation des chaînes de copolymère dans la formulation des NPs. De manière générale, les copolymères de PLA fonctionnalisés avec le PEG ont montré une amélioration du comportement de libération de médicaments en termes de taille et distribution de taille étroite, d’amélioration de l'efficacité de chargement, de diminution de l'adsorption des protéines plasmatiques sur leurs surfaces, de diminution de l’internalisation par les cellules de type macrophages, et enfin une meilleure activité antifongique des NPs chargées avec ITZ. En ce qui concerne l'analyse de la chimie de surface, l'imagerie de phase en AFM et les résultats de l’XPS ont montré la possibilité de la présence de davantage de chaînes de PEG à la surface des NPs faites de PEG-g-PLA que de NPS faites à partie de (PLA-PEG-PLA)n. Nos résultats démontrent que les propriétés des NPs peuvent être modifiées à la fois par le choix approprié de la composition en polymère mais aussi par l'architecture de ceux-ci. Les résultats suggèrent également que les copolymères de PEG-g-PLA pourraient être utilisés efficacement pour préparer des transporteurs nanométriques améliorant les propriétés de certains médicaments,notamment la solubilité, la stabilité et la biodisponibilité.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
(Minimally) 'epsilon'-incentive compatible competitive equilibria in economies with indivisibilities
Resumo:
We consider competitive and budget-balanced allocation rules for problems where a number of indivisible objects and a fixed amount of money is allocated among a group of agents. In 'small' economies, we identify under classical preferences each agent's maximal gain from manipulation. Using this result we find the competitive and budget-balanced allocation rules which are minimally manipulable for each preference profile in terms of any agent's maximal gain. If preferences are quasi-linear, then we can find a competitive and budget-balanced allocation rule such that for any problem, the maximal utility gain from manipulation is equalized among all agents.
Resumo:
Les propriétés intrinsèques, photophysiques, électrochimiques et cristallographiques des molécules fluorescentes 4,4'-bis(2-benzoxazolyle)stilbène (BBS) et 2,5-bis(5-tert-butyl-2-benzoxazolyle)thiophène (BBT) ont été étudiées en solution et dans les polymères semi-cristallins : poly(butylène succinate) (PBS) et polylactide (PLA). Les deux fluorophores sont caractérisés par de hauts rendements quantiques absolus de fluorescence. Toutefois, une désactivation de la fluorescence peut se produire par croisement intersystème vers l'état triplet pour le BBT, et par photoisomérisation trans-cis pour le BBS. La cinétique de ce dernier processus dépend de la concentration, résultant en un pur isomère cis photo-induit à faibles concentrations, qui est accompagné à des concentrations élevées par l'apparition d'un composé acide après photo-clivage suivi d'une oxydation. Cette étude a révélé des changements spectroscopiques prononcés suite à l’augmentation de la concentration des fluorophores, en particulier à l'état solide, spécifiques à l'agrégation des molécules à l'état fondamental pour le BBT et à la formation d’excimères pour le BBS, permettant ainsi de corréler les propriétés fluorescentes avec les caractéristiques du monocristal pour chaque fluorophore. En outre, le passage d’une dispersion moléculaire à une séparation de phases dans le cas du BBS est accompagné d'un changement de couleur du bleu au vert, qui est sensible à la déformation, à la température et au temps, affectant les rendements quantiques absolus de fluorescence et fournissant une large opportunité à la création d'une grande variété de polymères intelligents indicateurs capables d'auto-évaluation. D’autre part, la solubilité élevée du BBT dans les solvants courants, combinée à ses propriétés optoélectroniques élevées, en font un candidat en tant que référence universelle de fluorescence et matériau intelligent à la fois pour les études de polymères et en solution. Similairement aux mélanges comprenant des polymères miscibles, l'orientation du PBS augmente après ajout d'une molécule fluorescente, dont les monomères ont tendance à être orientés dans des films étirés, contrairement aux excimères ou agrégats.
Resumo:
La spectroscopie infrarouge à matrice à plan focal (PAIRS) est utilisée pour étudier la déformation et la relaxation des polymères à très haute vitesse, soit de 46 cm/s, grâce à sa résolution temporelle de quelques millisecondes. Des mesures complémentaires de spectroscopie infrarouge d’absorbance structurale par modulation de la polarisation (PM-IRSAS) ont été réalisées pour suivre des déformations plus lentes de 0,16 à 1,6 cm/s avec une résolution temporelle de quelques centaines de millisecondes. Notre étude a permis d’observer, à haute vitesse de déformation, un nouveau temps de relaxation (τ0) de l’ordre d’une dizaine de millisecondes qui n’est pas prédit dans la littérature. Le but de cette étude est de quantifier ce nouveau temps de relaxation ainsi que de déterminer les effets de la température, de la masse molaire et de la composition du mélange sur ce dernier. Des mesures effectuées sur du polystyrène (PS) de deux masses molaires différentes, soit 210 et 900 kg/mol, à diverses températures ont révélé que ce temps est indépendant de la masse molaire mais qu’il varie avec la température. Des mesures effectuées sur des films composés de PS900 et de PS deutéré de 21 kg/mol, ont révélé que ce temps ne dépend pas de la composition du mélange et que la longueur des chaînes de PS n’a aucun impact sur celui-ci. D’autres mesures effectuées sur des films de PS900 mélangé avec le poly(vinyl méthyl éther) (PVME) ont révélé que ce temps est identique pour le PS900 pur et le PS900 dans le mélange, mais qu’il est plus court pour le PVME, de l’ordre de quelques millisecondes.