11 resultados para Person Tracking, Depth, Motion Detection
em Université de Montréal, Canada
Resumo:
Les chutes chez les personnes âgées représentent un problème important de santé publique. Des études montrent qu’environ 30 % des personnes âgées de 65 ans et plus chutent chaque année au Canada, entraînant des conséquences néfastes sur les plans individuel, familiale et sociale. Face à une telle situation la vidéosurveillance est une solution efficace assurant la sécurité de ces personnes. À ce jour de nombreux systèmes d’assistance de services à la personne existent. Ces dispositifs permettent à la personne âgée de vivre chez elle tout en assurant sa sécurité par le port d'un capteur. Cependant le port du capteur en permanence par le sujet est peu confortable et contraignant. C'est pourquoi la recherche s’est récemment intéressée à l’utilisation de caméras au lieu de capteurs portables. Le but de ce projet est de démontrer que l'utilisation d'un dispositif de vidéosurveillance peut contribuer à la réduction de ce fléau. Dans ce document nous présentons une approche de détection automatique de chute, basée sur une méthode de suivi 3D du sujet en utilisant une caméra de profondeur (Kinect de Microsoft) positionnée à la verticale du sol. Ce suivi est réalisé en utilisant la silhouette extraite en temps réel avec une approche robuste d’extraction de fond 3D basée sur la variation de profondeur des pixels dans la scène. Cette méthode se fondera sur une initialisation par une capture de la scène sans aucun sujet. Une fois la silhouette extraite, les 10% de la silhouette correspondant à la zone la plus haute de la silhouette (la plus proche de l'objectif de la Kinect) sera analysée en temps réel selon la vitesse et la position de son centre de gravité. Ces critères permettront donc après analyse de détecter la chute, puis d'émettre un signal (courrier ou texto) vers l'individu ou à l’autorité en charge de la personne âgée. Cette méthode a été validée à l’aide de plusieurs vidéos de chutes simulées par un cascadeur. La position de la caméra et son information de profondeur réduisent de façon considérable les risques de fausses alarmes de chute. Positionnée verticalement au sol, la caméra permet donc d'analyser la scène et surtout de procéder au suivi de la silhouette sans occultation majeure, qui conduisent dans certains cas à des fausses alertes. En outre les différents critères de détection de chute, sont des caractéristiques fiables pour différencier la chute d'une personne, d'un accroupissement ou d'une position assise. Néanmoins l'angle de vue de la caméra demeure un problème car il n'est pas assez grand pour couvrir une surface conséquente. Une solution à ce dilemme serait de fixer une lentille sur l'objectif de la Kinect permettant l’élargissement de la zone surveillée.
Resumo:
Les pays industrialisés comme le Canada doivent faire face au vieillissement de leur population. En particulier, la majorité des personnes âgées, vivant à domicile et souvent seules, font face à des situations à risques telles que des chutes. Dans ce contexte, la vidéosurveillance est une solution innovante qui peut leur permettre de vivre normalement dans un environnement sécurisé. L’idée serait de placer un réseau de caméras dans l’appartement de la personne pour détecter automatiquement une chute. En cas de problème, un message pourrait être envoyé suivant l’urgence aux secours ou à la famille via une connexion internet sécurisée. Pour un système bas coût, nous avons limité le nombre de caméras à une seule par pièce ce qui nous a poussé à explorer les méthodes monoculaires de détection de chutes. Nous avons d’abord exploré le problème d’un point de vue 2D (image) en nous intéressant aux changements importants de la silhouette de la personne lors d’une chute. Les données d’activités normales d’une personne âgée ont été modélisées par un mélange de gaussiennes nous permettant de détecter tout événement anormal. Notre méthode a été validée à l’aide d’une vidéothèque de chutes simulées et d’activités normales réalistes. Cependant, une information 3D telle que la localisation de la personne par rapport à son environnement peut être très intéressante pour un système d’analyse de comportement. Bien qu’il soit préférable d’utiliser un système multi-caméras pour obtenir une information 3D, nous avons prouvé qu’avec une seule caméra calibrée, il était possible de localiser une personne dans son environnement grâce à sa tête. Concrêtement, la tête de la personne, modélisée par une ellipsoide, est suivie dans la séquence d’images à l’aide d’un filtre à particules. La précision de la localisation 3D de la tête a été évaluée avec une bibliothèque de séquence vidéos contenant les vraies localisations 3D obtenues par un système de capture de mouvement (Motion Capture). Un exemple d’application utilisant la trajectoire 3D de la tête est proposée dans le cadre de la détection de chutes. En conclusion, un système de vidéosurveillance pour la détection de chutes avec une seule caméra par pièce est parfaitement envisageable. Pour réduire au maximum les risques de fausses alarmes, une méthode hybride combinant des informations 2D et 3D pourrait être envisagée.
Resumo:
This paper describes a novel algorithm for tracking the motion of the urethra from trans-perineal ultrasound. Our work is based on the structure-from-motion paradigm and therefore handles well structures with ill-defined and partially missing boundaries. The proposed approach is particularly well-suited for video sequences of low resolution and variable levels of blurriness introduced by anatomical motion of variable speed. Our tracking method identifies feature points on a frame by frame basis using the SURF detector/descriptor. Inter-frame correspondence is achieved using nearest-neighbor matching in the feature space. The motion is estimated using a non-linear bi-quadratic model, which adequately describes the deformable motion of the urethra. Experimental results are promising and show that our algorithm performs well when compared to manual tracking.
Resumo:
La vidéosurveillance a pour objectif principal de protéger les personnes et les biens en détectant tout comportement anormal. Ceci ne serait possible sans la détection de mouvement dans l’image. Ce processus complexe se base le plus souvent sur une opération de soustraction de l’arrière-plan statique d’une scène sur l’image. Mais il se trouve qu’en vidéosurveillance, des caméras sont souvent en mouvement, engendrant ainsi, un changement significatif de l’arrière-plan; la soustraction de l’arrière-plan devient alors problématique. Nous proposons dans ce travail, une méthode de détection de mouvement et particulièrement de chutes qui s’affranchit de la soustraction de l’arrière-plan et exploite la rotation de la caméra dans la détection du mouvement en utilisant le calcul homographique. Nos résultats sur des données synthétiques et réelles démontrent la faisabilité de cette approche.
Resumo:
La perception visuelle ne se résume pas à la simple perception des variations de la quantité de lumière qui atteint la rétine. L’image naturelle est en effet composée de variation de contraste et de texture que l’on qualifie d’information de deuxième ordre (en opposition à l’information de premier ordre : luminance). Il a été démontré chez plusieurs espèces qu’un mouvement de deuxième ordre (variation spatiotemporelle du contraste ou de la texture) est aisément détecté. Les modèles de détection du mouvement tel le modèle d’énergie d’Adelson et Bergen ne permettent pas d’expliquer ces résultats, car le mouvement de deuxième ordre n’implique aucune variation de la luminance. Il existe trois modèles expliquant la détection du mouvement de deuxième ordre : la présence d’une circuiterie de type filter-rectify-filter, un mécanisme de feature-tracking ou simplement l’existence de non-linéarités précoces dans le traitement visuel. Par ailleurs, il a été proposé que l’information visuelle de deuxième ordre soit traitée par une circuiterie neuronale distincte de celle qui traite du premier ordre. Bon nombre d’études réfutent cependant cette théorie et s’entendent sur le fait qu’il n’y aurait qu’une séparation partielle à bas niveau. Les études électrophysiologiques sur la perception du mouvement de deuxième ordre ont principalement été effectuées chez le singe et le chat. Chez le chat, toutefois, seules les aires visuelles primaires (17 et 18) ont été extensivement étudiées. L’implication dans le traitement du deuxième ordre de l’aire dédiée à la perception du mouvement, le Sulcus syprasylvien postéro-médian latéral (PMLS), n’est pas encore connue. Pour ce faire, nous avons étudié les profils de réponse des neurones du PMLS évoqués par des stimuli dont la composante dynamique était de deuxième ordre. Les profils de réponses au mouvement de deuxième ordre sont très similaires au premier ordre, bien que moins sensibles. Nos données suggèrent que la perception du mouvement par le PMLS serait de type form-cue invariant. En somme, les résultats démontrent que le PMLS permet un traitement plus complexe du mouvement du deuxième ordre et sont en accord avec son rôle privilégié dans la perception du mouvement.
Resumo:
Ce mémoire s'intéresse à la détection de mouvement dans une séquence d'images acquises à l'aide d'une caméra fixe. Dans ce problème, la difficulté vient du fait que les mouvements récurrents ou non significatifs de la scène tels que les oscillations d'une branche, l'ombre d'un objet ou les remous d'une surface d'eau doivent être ignorés et classés comme appartenant aux régions statiques de la scène. La plupart des méthodes de détection de mouvement utilisées à ce jour reposent en fait sur le principe bas-niveau de la modélisation puis la soustraction de l'arrière-plan. Ces méthodes sont simples et rapides mais aussi limitées dans les cas où l'arrière-plan est complexe ou bruité (neige, pluie, ombres, etc.). Cette recherche consiste à proposer une technique d'amélioration de ces algorithmes dont l'idée principale est d'exploiter et mimer deux caractéristiques essentielles du système de vision humain. Pour assurer une vision nette de l’objet (qu’il soit fixe ou mobile) puis l'analyser et l'identifier, l'œil ne parcourt pas la scène de façon continue, mais opère par une série de ``balayages'' ou de saccades autour (des points caractéristiques) de l'objet en question. Pour chaque fixation pendant laquelle l'œil reste relativement immobile, l'image est projetée au niveau de la rétine puis interprétée en coordonnées log polaires dont le centre est l'endroit fixé par l'oeil. Les traitements bas-niveau de détection de mouvement doivent donc s'opérer sur cette image transformée qui est centrée pour un point (de vue) particulier de la scène. L'étape suivante (intégration trans-saccadique du Système Visuel Humain (SVH)) consiste ensuite à combiner ces détections de mouvement obtenues pour les différents centres de cette transformée pour fusionner les différentes interprétations visuelles obtenues selon ses différents points de vue.
Resumo:
Le but de ce travail est d’étudier la faisabilité de la détection de mouvements dans des séquences d’images en utilisant l’équation de continuité et la dynamique de supraconductivité. Notre approche peut être motivée par le fait que l’équation de continuité apparait dans plusieurs techniques qui estiment le flot optique. Un grand nombre de techniques qui utilisent les flots optiques utilisent une contrainte appelée contrainte de l’invariance lumineuse. La dynamique de supraconductivité nous permet de nous affranchir de la contrainte de l’invariance lumineuse. Les expériences se feront avec la base de données de séquences d’images CDNET 2014. Pour obtenir les résultats numériques en terme de score F1, une combinaison sera faite par la suite entre la dynamique de supraconductivité et un méchanisme d’attention qui est un résumé des vérites de terrain.
Resumo:
Lorsque nous cherchons un ami dans une foule ou attendons un proche sur le quai d’une gare, l’identification de cette personne nous est souvent possible grâce à la reconnaissance de sa démarche. Plusieurs chercheurs se sont intéressés à la façon de se mouvoir de l’être humain en étudiant le mouvement biologique. Le mouvement biologique est la représentation, par un ensemble structuré de points lumineux animés, des gestes d’un individu en mouvement dans une situation particulière (marche, golf, tennis, etc.). Une des caractéristiques du patron de mouvement biologique peu étudiée et néanmoins essentielle est sa taille. La plupart des études concernées utilisent des patrons de petite taille correspondant à une personne située à 16 mètres de l’observateur. Or les distances d’interaction sociale, chez l’humain, sont généralement inférieures à 16 mètres. D’autre part, les résultats des études portant sur la perception des patrons de mouvement biologique et le vieillissement demeurent contradictoires. Nous avons donc, dans un premier temps, évalué, dans une voûte d’immersion en réalité virtuelle, l’importance de la distance entre l’observateur et le patron de mouvement biologique, chez des adultes jeunes et des personnes âgées. Cette étude a démontré que l’évaluation de la direction de mouvement d’un patron devient difficile pour les personnes âgées lorsque le patron est situé à moins de 4 mètres, alors que les résultats des jeunes sont comparables pour toutes distances, à partir d’un mètre et au-delà. Cela indique que les gens âgés peinent à intégrer l’information occupant une portion étendue de leur champ visuel, ce qui peut s’avérer problématique dans des espaces où les distances d’interaction sont inférieures à 4 mètres. Nombre de recherches indiquent aussi clairement que les gens âgés s’adaptent difficilement à des situations complexes. Nous avons donc cherché, dans un second temps, à minimiser ces altérations liées à l’âge de l’intégration des processus complexes, en utilisant une tâche adaptée à l’entraînement et à l’évaluation de l’intégration de ces processus : la poursuite multiple d’objets dans l’espace ou 3D-MOT (3 Dimensions Multiple Object Tracking). Le 3D-MOT consiste à suivre simultanément plusieurs objets d’intérêt en mouvement parmi des distracteurs également en mouvement. Nous avons évalué les habiletés de participants jeunes et âgés à une telle tâche dans un environnement virtuel en 3D en déterminant la vitesse maximale de déplacement des objets à laquelle la tâche pouvait être exécutée. Les résultats des participants âgés étaient initialement inférieurs à ceux des jeunes. Cependant, après plusieurs semaines d’entraînement, les personnes âgées ont obtenu des résultats comparables à ceux des sujets jeunes non entraînés. Nous avons enfin évalué, pour ces mêmes participants, l’impact de cet entraînement sur la perception de patrons de mouvement biologique présentés à 4 et 16 mètres dans l’espace virtuel : les habiletés des personnes âgées entraînées obtenues à 4 mètres ont augmenté de façon significative pour atteindre le niveau de celles obtenues à 16 mètres. Ces résultats suggèrent que l’entraînement à certaines tâches peut réduire les déclins cognitivo-perceptifs liés à l’âge et possiblement aider les personnes âgées dans leurs déplacements quotidiens.
Resumo:
Réalisé en cotutelle avec le laboratoire M2S de Rennes 2
Resumo:
À mesure que la population des personnes agées dans les pays industrialisés augmente au fil de années, les ressources nécessaires au maintien du niveau de vie de ces personnes augmentent aussi. Des statistiques montrent que les chutes sont l’une des principales causes d’hospitalisation chez les personnes agées, et, de plus, il a été démontré que le risque de chute d’une personne agée a une correlation avec sa capacité de maintien de l’équilibre en étant debout. Il est donc d’intérêt de développer un système automatisé pour analyser l’équilibre chez une personne, comme moyen d’évaluation objective. Dans cette étude, nous avons proposé l’implémentation d’un tel système. En se basant sur une installation simple contenant une seule caméra sur un trépied, on a développé un algorithme utilisant une implémentation de la méthode de détection d’objet de Viola-Jones, ainsi qu’un appariement de gabarit, pour suivre autant le mouvement latéral que celui antérieur-postérieur d’un sujet. On a obtenu des bons résultats avec les deux types de suivi, cependant l’algorithme est sensible aux conditions d’éclairage, ainsi qu’à toute source de bruit présent dans les images. Il y aurait de l’intérêt, comme développement futur, d’intégrer les deux types de suivi, pour ainsi obtenir un seul ensemble de données facile à interpréter.
Resumo:
Le mouvement de la marche est un processus essentiel de l'activité humaine et aussi le résultat de nombreuses interactions collaboratives entre les systèmes neurologiques, articulaires et musculo-squelettiques fonctionnant ensemble efficacement. Ceci explique pourquoi une analyse de la marche est aujourd'hui de plus en plus utilisée pour le diagnostic (et aussi la prévention) de différents types de maladies (neurologiques, musculaires, orthopédique, etc.). Ce rapport présente une nouvelle méthode pour visualiser rapidement les différentes parties du corps humain liées à une possible asymétrie (temporellement invariante par translation) existant dans la démarche d'un patient pour une possible utilisation clinique quotidienne. L'objectif est de fournir une méthode à la fois facile et peu dispendieuse permettant la mesure et l'affichage visuel, d'une manière intuitive et perceptive, des différentes parties asymétriques d'une démarche. La méthode proposée repose sur l'utilisation d'un capteur de profondeur peu dispendieux (la Kinect) qui est très bien adaptée pour un diagnostique rapide effectué dans de petites salles médicales car ce capteur est d'une part facile à installer et ne nécessitant aucun marqueur. L'algorithme que nous allons présenter est basé sur le fait que la marche saine possède des propriétés de symétrie (relativement à une invariance temporelle) dans le plan coronal.