10 resultados para Orthogonal polynomials in several variables

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <>, pour des fonctions de plusieurs variables, en liaison avec les fonctions $C$, $S^s$ et $S^l$. On fournit également une description complète des transformées en cosinus discrètes de types V--VIII à $n$ dimensions en employant les fonctions spéciales associées aux algèbres de Lie simples $B_n$ et $C_n$, appelées cosinus antisymétriques et symétriques. Enfin, on étudie quatre familles de polynômes orthogonaux à plusieurs variables, analogues aux polynômes de Tchebyshev, introduits en utilisant les cosinus (anti)symétriques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire s’applique à étudier d’abord, dans la première partie, la mesure de Mahler des polynômes à une seule variable. Il commence en donnant des définitions et quelques résultats pertinents pour le calcul de telle hauteur. Il aborde aussi le sujet de la question de Lehmer, la conjecture la plus célèbre dans le domaine, donne quelques exemples et résultats ayant pour but de résoudre la question. Ensuite, il y a l’extension de la mesure de Mahler sur les polynômes à plusieurs variables, une démarche semblable au premier cas de la mesure de Mahler, et le sujet des points limites avec quelques exemples. Dans la seconde partie, on commence par donner des définitions concernant un ordre supérieur de la mesure de Mahler, et des généralisations en passant des polynômes simples aux polynômes à plusieurs variables. La question de Lehmer existe aussi dans le domaine de la mesure de Mahler supérieure, mais avec des réponses totalement différentes. À la fin, on arrive à notre objectif, qui sera la démonstration de la généralisation d’un théorème de Boyd-Lawton, ce dernier met en évidence une relation entre la mesure de Mahler des polynômes à plusieurs variables avec la limite de la mesure de Mahler des polynômes à une seule variable. Ce résultat a des conséquences en termes de la conjecture de Lehmer et sert à clarifier la relation entre les valeurs de la mesure de Mahler des polynômes à une variable et celles des polynômes à plusieurs variables, qui, en effet, sont très différentes en nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les simulations ont été implémentées avec le programme Java.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Au Canada, le cancer de la prostate est le cancer le plus fréquemment diagnostiqué chez les hommes et le plus mortel après les cancers du poumon et du côlon. Il y a place à optimiser le traitement du cancer de la prostate de manière à mettre en œuvre une médecine personnalisée qui s’adapte aux caractéristiques de la maladie de chaque patient de façon individuelle. Dans ce mémoire, nous avons évalué la réponse aux dommages de l’ADN (RDA) comme biomarqueur potentiel du cancer de la prostate. Les lésions potentiellement oncogènes de l'ADN déclenche une cascade de signalisation favorisant la réparation de l'ADN et l’activation des points de contrôle du cycle cellulaire pour préserver l’intégrité du génome. La RDA est un mécanisme central de suppression tumorale chez l’homme. La RDA joue un rôle important dans l’arrêt de la prolifération des cellules dont les génomes sont compromis, et donc, prévient la progression du cancer en agissant comme une barrière. Cette réponse cellulaire détermine également comment les cellules normales et cancéreuses réagissent aux agents utilisés pour endommager l'ADN lors du traitement du cancer comme la radiothérapie ou la chimiothérapie, en plus la présence d,un certain niveau de RDA dans les cellules du cancer de la prostate peuvent également influer sur l'issue de ces traitements. L’activation des signaux de la RDA peut agir comme un frein au cancer dans plusieurs lésions pré-néoplasiques de l'homme, y compris le cancer de la prostate. Il a été démontré que la RDA est augmentée dans les cellules de néoplasie intra- épithéliale (PIN) comparativement aux cellules prostatiques normales. Toutefois, le devient de la RDA entre le PIN et l’adénocarcinome est encore mal documenté et aucune corrélation n'a été réalisée avec les données cliniques des patients. Notre hypothèse est que les niveaux d’activation de la RDA seront variables selon les différents grades et agressivité du cancer de la prostate. Ces niveaux pourront être corrélés et possiblement prédire les réponses cliniques aux traitements des patients et aider à définir une stratégie plus efficace et de nouveaux biomarqueurs pour prédire les résultats du traitement et personnaliser les traitements en conséquence. Nos objectifs sont de caractériser l'activation de la RDA dans le carcinome de la prostate et corréler ses données avec les résultats cliniques. Méthodes : Nous avons utilisé des micro-étalages de tissus (tissue microarrays- TMAs) de 300 patients ayant subi une prostatectomie radicale pour un cancer de la prostate et déterminé le niveau d’expression de protéines de RDA dans le compartiment stromal et épithélial des tissus normaux et cancéreux. Les niveaux d’expression de 53BP1, p-H2AX, p65 et p-CHK2 ont été quantifiés par immunofluorescence (IF) et par un logiciel automatisé. Ces marqueurs de RDA ont d’abord été validés sur des TMAs-cellule constitués de cellules de fibroblastes normales ou irradiées (pour induire une activation du RDA). Les données ont été quantifiées à l'aide de couches binaires couramment utilisées pour classer les pixels d'une image pour que l’analyse se fasse de manière indépendante permettant la détection de plusieurs régions morphologiques tels que le noyau, l'épithélium et le stroma. Des opérations arithmétiques ont ensuite été réalisées pour obtenir des valeurs correspondant à l'activation de la RDA qui ont ensuite été corrélées à la récidive biochimique et l'apparition de métastases osseuses. Résultats : De faibles niveaux d'expression de la protéine p65 dans le compartiment nucléaire épithélial du tissu normal de la prostate sont associés à un faible risque de récidive biochimique. Par ailleurs, nous avons aussi observé que de faibles niveaux d'expression de la protéine 53BP1 dans le compartiment nucléaire épithéliale du tissu prostatique normal et cancéreux ont été associés à une plus faible incidence de métastases osseuses. Conclusion: Ces résultats confirment que p65 a une valeur pronostique chez les patients présentant un adénocarcinome de la prostate. Ces résultats suggèrent également que le marqueur 53BP1 peut aussi avoir une valeur pronostique chez les patients avec le cancer de la prostate. La validation d'autres marqueurs de RDA pourront également être corrélés aux résultats cliniques. De plus, avec un suivi des patients plus long, il se peut que ces résultats se traduisent par une corrélation avec la survie. Les niveaux d'activité de la RDA pourront éventuellement être utilisés en clinique dans le cadre du profil du patient comme le sont actuellement l’antigène prostatique spécifique (APS) ou le Gleason afin de personnaliser le traitement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).