31 resultados para Option pricing
em Université de Montréal, Canada
Resumo:
This paper assesses the empirical performance of an intertemporal option pricing model with latent variables which generalizes the Hull-White stochastic volatility formula. Using this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility alone as in the Hull-White case. When we specialize this model to an equilibrium recursive utility model, we show through simulations that option prices are more informative than stock prices about the structural parameters of the model. We also show that a simple method of moments with a panel of option prices provides good estimates of the parameters of the model. This lays the ground for an empirical assessment of this equilibrium model with S&P 500 option prices in terms of pricing errors.
Resumo:
This paper develops a general stochastic framework and an equilibrium asset pricing model that make clear how attitudes towards intertemporal substitution and risk matter for option pricing. In particular, we show under which statistical conditions option pricing formulas are not preference-free, in other words, when preferences are not hidden in the stock and bond prices as they are in the standard Black and Scholes (BS) or Hull and White (HW) pricing formulas. The dependence of option prices on preference parameters comes from several instantaneous causality effects such as the so-called leverage effect. We also emphasize that the most standard asset pricing models (CAPM for the stock and BS or HW preference-free option pricing) are valid under the same stochastic setting (typically the absence of leverage effect), regardless of preference parameter values. Even though we propose a general non-preference-free option pricing formula, we always keep in mind that the BS formula is dominant both as a theoretical reference model and as a tool for practitioners. Another contribution of the paper is to characterize why the BS formula is such a benchmark. We show that, as soon as we are ready to accept a basic property of option prices, namely their homogeneity of degree one with respect to the pair formed by the underlying stock price and the strike price, the necessary statistical hypotheses for homogeneity provide BS-shaped option prices in equilibrium. This BS-shaped option-pricing formula allows us to derive interesting characterizations of the volatility smile, that is, the pattern of BS implicit volatilities as a function of the option moneyness. First, the asymmetry of the smile is shown to be equivalent to a particular form of asymmetry of the equivalent martingale measure. Second, this asymmetry appears precisely when there is either a premium on an instantaneous interest rate risk or on a generalized leverage effect or both, in other words, whenever the option pricing formula is not preference-free. Therefore, the main conclusion of our analysis for practitioners should be that an asymmetric smile is indicative of the relevance of preference parameters to price options.
Resumo:
Latent variable models in finance originate both from asset pricing theory and time series analysis. These two strands of literature appeal to two different concepts of latent structures, which are both useful to reduce the dimension of a statistical model specified for a multivariate time series of asset prices. In the CAPM or APT beta pricing models, the dimension reduction is cross-sectional in nature, while in time-series state-space models, dimension is reduced longitudinally by assuming conditional independence between consecutive returns, given a small number of state variables. In this paper, we use the concept of Stochastic Discount Factor (SDF) or pricing kernel as a unifying principle to integrate these two concepts of latent variables. Beta pricing relations amount to characterize the factors as a basis of a vectorial space for the SDF. The coefficients of the SDF with respect to the factors are specified as deterministic functions of some state variables which summarize their dynamics. In beta pricing models, it is often said that only the factorial risk is compensated since the remaining idiosyncratic risk is diversifiable. Implicitly, this argument can be interpreted as a conditional cross-sectional factor structure, that is, a conditional independence between contemporaneous returns of a large number of assets, given a small number of factors, like in standard Factor Analysis. We provide this unifying analysis in the context of conditional equilibrium beta pricing as well as asset pricing with stochastic volatility, stochastic interest rates and other state variables. We address the general issue of econometric specifications of dynamic asset pricing models, which cover the modern literature on conditionally heteroskedastic factor models as well as equilibrium-based asset pricing models with an intertemporal specification of preferences and market fundamentals. We interpret various instantaneous causality relationships between state variables and market fundamentals as leverage effects and discuss their central role relative to the validity of standard CAPM-like stock pricing and preference-free option pricing.
Resumo:
In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.
Resumo:
Le contenu de cette thèse est divisé de la façon suivante. Après un premier chapitre d’introduction, le Chapitre 2 est consacré à introduire aussi simplement que possible certaines des théories qui seront utilisées dans les deux premiers articles. Dans un premier temps, nous discuterons des points importants pour la construction de l’intégrale stochastique par rapport aux semimartingales avec paramètre spatial. Ensuite, nous décrirons les principaux résultats de la théorie de l’évaluation en monde neutre au risque et, finalement, nous donnerons une brève description d’une méthode d’optimisation connue sous le nom de dualité. Les Chapitres 3 et 4 traitent de la modélisation de l’illiquidité et font l’objet de deux articles. Le premier propose un modèle en temps continu pour la structure et le comportement du carnet d’ordres limites. Le comportement du portefeuille d’un investisseur utilisant des ordres de marché est déduit et des conditions permettant d’éliminer les possibilités d’arbitrages sont données. Grâce à la formule d’Itô généralisée il est aussi possible d’écrire la valeur du portefeuille comme une équation différentielle stochastique. Un exemple complet de modèle de marché est présenté de même qu’une méthode de calibrage. Dans le deuxième article, écrit en collaboration avec Bruno Rémillard, nous proposons un modèle similaire mais cette fois-ci en temps discret. La question de tarification des produits dérivés est étudiée et des solutions pour le prix des options européennes de vente et d’achat sont données sous forme explicite. Des conditions spécifiques à ce modèle qui permettent d’éliminer l’arbitrage sont aussi données. Grâce à la méthode duale, nous montrons qu’il est aussi possible d’écrire le prix des options européennes comme un problème d’optimisation d’une espérance sur en ensemble de mesures de probabilité. Le Chapitre 5 contient le troisième article de la thèse et porte sur un sujet différent. Dans cet article, aussi écrit en collaboration avec Bruno Rémillard, nous proposons une méthode de prévision des séries temporelles basée sur les copules multivariées. Afin de mieux comprendre le gain en performance que donne cette méthode, nous étudions à l’aide d’expériences numériques l’effet de la force et la structure de dépendance sur les prévisions. Puisque les copules permettent d’isoler la structure de dépendance et les distributions marginales, nous étudions l’impact de différentes distributions marginales sur la performance des prévisions. Finalement, nous étudions aussi l’effet des erreurs d’estimation sur la performance des prévisions. Dans tous les cas, nous comparons la performance des prévisions en utilisant des prévisions provenant d’une série bivariée et d’une série univariée, ce qui permet d’illustrer l’avantage de cette méthode. Dans un intérêt plus pratique, nous présentons une application complète sur des données financières.
Asymmetry Risk, State Variables and Stochastic Discount Factor Specification in Asset Pricing Models
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. the conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. the inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
We reconsider the following cost-sharing problem: agent i = 1,...,n demands a quantity xi of good i; the corresponding total cost C(x1,...,xn) must be shared among the n agents. The Aumann-Shapley prices (p1,...,pn) are given by the Shapley value of the game where each unit of each good is regarded as a distinct player. The Aumann-Shapley cost-sharing method assigns the cost share pixi to agent i. When goods come in indivisible units, we show that this method is characterized by the two standard axioms of Additivity and Dummy, and the property of No Merging or Splitting: agents never find it profitable to split or merge their demands.