8 resultados para Numerical results

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans ce mémoire, nous présentons un nouveau type de problème de confection de tour- née pour un seul véhicule avec cueillettes et livraisons et contrainte de chargement. Cette variante est motivée par des problèmes similaires rapportés dans la littérature. Le véhi- cule en question contient plusieurs piles où des colis de hauteurs différentes sont empilés durant leur transport. La hauteur totale des items contenus dans chacune des piles ne peut dépasser une certaine hauteur maximale. Aucun déplacement n’est permis lors de la li- vraison d’un colis, ce qui signifie que le colis doit être sur le dessus d’une pile au moment d’être livré. De plus, tout colis i ramassé avant un colis j et contenu dans la même pile doit être livré après j. Une heuristique à grand voisinage, basé sur des travaux récents dans le domaine, est proposée comme méthode de résolution. Des résultats numériques sont rapportés pour plusieurs instances classiques ainsi que pour de nouvelles instances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les réseaux optiques à commutation de rafales (OBS) sont des candidats pour jouer un rôle important dans le cadre des réseaux optiques de nouvelle génération. Dans cette thèse, nous nous intéressons au routage adaptatif et au provisionnement de la qualité de service dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la capacité du routage multi-chemins et du routage alternatif (par déflection) à améliorer les performances des réseaux OBS, pro-activement pour le premier et ré-activement pour le second. Dans ce contexte, nous proposons une approche basée sur l’apprentissage par renforcement où des agents placés dans tous les nœuds du réseau coopèrent pour apprendre, continuellement, les chemins du routage et les chemins alternatifs optimaux selon l’état actuel du réseau. Les résultats numériques montrent que cette approche améliore les performances des réseaux OBS comparativement aux solutions proposées dans la littérature. Dans la deuxième partie de cette thèse, nous nous intéressons au provisionnement absolu de la qualité de service où les performances pire-cas des classes de trafic de priorité élevée sont garanties quantitativement. Plus spécifiquement, notre objectif est de garantir la transmission sans pertes des rafales de priorité élevée à l’intérieur du réseau OBS tout en préservant le multiplexage statistique et l’utilisation efficace des ressources qui caractérisent les réseaux OBS. Aussi, nous considérons l’amélioration des performances du trafic best effort. Ainsi, nous proposons deux approches : une approche basée sur les nœuds et une approche basée sur les chemins. Dans l’approche basée sur les nœuds, un ensemble de longueurs d’onde est assigné à chaque nœud du bord du réseau OBS pour qu’il puisse envoyer son trafic garanti. Cette assignation prend en considération les distances physiques entre les nœuds du bord. En outre, nous proposons un algorithme de sélection des longueurs d’onde pour améliorer les performances des rafales best effort. Dans l’approche basée sur les chemins, le provisionnement absolu de la qualité de service est fourni au niveau des chemins entre les nœuds du bord du réseau OBS. À cette fin, nous proposons une approche de routage et d’assignation des longueurs d’onde qui a pour but la réduction du nombre requis de longueurs d’onde pour établir des chemins sans contentions. Néanmoins, si cet objectif ne peut pas être atteint à cause du nombre limité de longueurs d’onde, nous proposons de synchroniser les chemins en conflit sans le besoin pour des équipements additionnels. Là aussi, nous proposons un algorithme de sélection des longueurs d’onde pour les rafales best effort. Les résultats numériques montrent que l’approche basée sur les nœuds et l’approche basée sur les chemins fournissent le provisionnement absolu de la qualité de service pour le trafic garanti et améliorent les performances du trafic best effort. En outre, quand le nombre de longueurs d’ondes est suffisant, l’approche basée sur les chemins peut accommoder plus de trafic garanti et améliorer les performances du trafic best effort par rapport à l’approche basée sur les nœuds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <>, qui s'observe dans les <>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux de croissance des normes ponctuelle et L1. Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté- resse aux solutions de l'équation aux valeurs propres f = f avec soit des conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de Neumann ( @f @nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement la dérivée par rapport à la variable radiale : @ @n = @ @r ). Les fonctions propres correspondantes sont données par : f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m- ième zéro et k0 n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions propres pour le problème de Dirichlet par f et celles pour le problème de Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par : SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) En n, on impose que nos fonctions propres soient normalisées par rapport à la norme L2 sur D, c'est-à-dire : R D F2 da = 1 (à partir de maintenant on utilise F pour noter les fonctions propres normalisées et f pour les fonctions propres quelconques). Sous ces conditions, on s'intéresse à déterminer le taux de croissance de la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est vi important de mentionner que la norme L1 d'une fonction sur un domaine correspond au maximum de sa valeur absolue sur le domaine. Notons que dépend de deux paramètres, m et n et que la dépendance entre et la norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du comportement de la norme L1 est étroitement liée à l'étude de l'ensemble E(D) qui est l'ensemble des points d'accumulation de log(jjF jj1)= log : Notre principal résultat sera de montrer que [7=36; 1=4] E(B2) [1=18; 1=4]: Le mémoire est organisé comme suit. L'introdution et les résultats principaux sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits biens connus concernant les fonctions propres du laplacien sur le disque et sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant la croissance de la norme ponctuelle des fonctions propres. On montre notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque, la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre 4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl ème avec conditions frontières de Neumann est discuté au chapitre 5 et on présente quelques résultats numériques au chapitre 6. Une brève discussion et un sommaire de notre travail se trouve au chapitre 7.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

De nombreux problèmes en transport et en logistique peuvent être formulés comme des modèles de conception de réseau. Ils requièrent généralement de transporter des produits, des passagers ou encore des données dans un réseau afin de satisfaire une certaine demande tout en minimisant les coûts. Dans ce mémoire, nous nous intéressons au problème de conception de réseau avec coûts fixes et capacités. Ce problème consiste à ouvrir un sous-ensemble des liens dans un réseau afin de satisfaire la demande, tout en respectant les contraintes de capacités sur les liens. L'objectif est de minimiser les coûts fixes associés à l'ouverture des liens et les coûts de transport des produits. Nous présentons une méthode exacte pour résoudre ce problème basée sur des techniques utilisées en programmation linéaire en nombres entiers. Notre méthode est une variante de l'algorithme de branch-and-bound, appelée branch-and-price-and-cut, dans laquelle nous exploitons à la fois la génération de colonnes et de coupes pour la résolution d'instances de grande taille, en particulier, celles ayant un grand nombre de produits. En nous comparant à CPLEX, actuellement l'un des meilleurs logiciels d'optimisation mathématique, notre méthode est compétitive sur les instances de taille moyenne et supérieure sur les instances de grande taille ayant un grand nombre de produits, et ce, même si elle n'utilise qu'un seul type d'inégalités valides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les problèmes de conception de réseaux ont reçu un intérêt particulier et ont été largement étudiés de par leurs nombreuses applications dans différents domaines, tels que les transports et les télécommunications. Nous nous intéressons dans ce mémoire au problème de conception de réseaux avec coûts d’ajout de capacité. Il s’agit d’installer un ensemble d’équipements sur un réseau en vue de satisfaire la demande, tout en respectant les contraintes de capacité, chaque arc pouvant admettre plusieurs équipements. L’objectif est de minimiser les coûts variables de transport des produits et les coûts fixes d’installation ou d’augmentation de capacité des équipements. La méthode que nous envisageons pour résoudre ce problème est basée sur les techniques utilisées en programmation linéaire en nombres entiers, notamment celles de génération de colonnes et de coupes. Ces méthodes sont introduites dans un algorithme général de branch-and-bound basé sur la relaxation linéaire. Nous avons testé notre méthode sur quatre groupes d’instances de tailles différentes, et nous l’avons comparée à CPLEX, qui constitue un des meilleurs solveurs permettant de résoudre des problèmes d’optimisation, ainsi qu’à une méthode existante dans la littérature combinant des méthodes exactes et heuristiques. Notre méthode a été plus performante que ces deux méthodes, notamment pour les instances de très grandes tailles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les façons d'aborder l'étude du spectre du laplacien sont multiples. Ce mémoire se concentre sur les partitions spectrales optimales de domaines planaires. Plus précisément, lorsque nous imposons des conditions aux limites de Dirichlet, nous cherchons à trouver la ou les partitions qui réalisent l'infimum (sur l'ensemble des partitions à un certain nombre de composantes) du maximum de la première valeur propre du laplacien sur tous ses sous-domaines. Dans les dernières années, cette question a été activement étudiée par B. Helffer, T. Hoffmann-Ostenhof, S. Terracini et leurs collaborateurs, qui ont obtenu plusieurs résultats analytiques et numériques importants. Dans ce mémoire, nous proposons un problème analogue, mais pour des conditions aux limites de Neumann cette fois. Dans ce contexte, nous nous intéressons aux partitions spectrales maximales plutôt que minimales. Nous cherchons alors à vérifier le maximum sur toutes les $k$-partitions possibles du minimum de la première valeur propre non nulle de chacune des composantes. Cette question s'avère plus difficile que sa semblable dans la mesure où plusieurs propriétés des valeurs propres de Dirichlet, telles que la monotonicité par rapport au domaine, ne tiennent plus. Néanmoins, quelques résultats sont obtenus pour des 2-partitions de domaines symétriques et des partitions spécifiques sont trouvées analytiquement pour des domaines rectangulaires. En outre, des propriétés générales des partitions spectrales optimales et des problèmes ouverts sont abordés.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le problème de conception de réseaux est un problème qui a été beaucoup étudié dans le domaine de la recherche opérationnelle pour ses caractéristiques, et ses applications dans des nombreux domaines tels que le transport, les communications, et la logistique. Nous nous intéressons en particulier dans ce mémoire à résoudre le problème de conception de réseaux avec coûts fixes et sans capacité, en satisfaisant les demandes de tous les produits tout en minimisant la somme des coûts de transport de ces produits et des coûts fixes de conception du réseau. Ce problème se modélise généralement sous la forme d’un programme linéaire en nombres entiers incluant des variables continues. Pour le résoudre, nous avons appliqué la méthode exacte de Branch-and-Bound basée sur une relaxation linéaire du problème avec un critère d’arrêt, tout en exploitant les méthodes de génération de colonnes et de génération de coupes. Nous avons testé la méthode de Branch-and-Price-and-Cut sur 156 instances divisées en cinq groupes de différentes tailles, et nous l’avons comparée à Cplex, l’un des meilleurs solveurs d’optimisation mathématique, ainsi qu’à la méthode de Branch-and- Cut. Notre méthode est compétitive et plus performante sur les instances de grande taille ayant un grand nombre de produits.