4 resultados para Numerical integration
em Université de Montréal, Canada
Resumo:
En synthèse d’images, reproduire les effets complexes de la lumière sur des matériaux transluminescents, tels que la cire, le marbre ou la peau, contribue grandement au réalisme d’une image. Malheureusement, ce réalisme supplémentaire est couteux en temps de calcul. Les modèles basés sur la théorie de la diffusion visent à réduire ce coût en simulant le comportement physique du transport de la lumière sous surfacique tout en imposant des contraintes de variation sur la lumière incidente et sortante. Une composante importante de ces modèles est leur application à évaluer hiérarchiquement l’intégrale numérique de l’illumination sur la surface d’un objet. Cette thèse révise en premier lieu la littérature actuelle sur la simulation réaliste de la transluminescence, avant d’investiguer plus en profondeur leur application et les extensions des modèles de diffusion en synthèse d’images. Ainsi, nous proposons et évaluons une nouvelle technique d’intégration numérique hiérarchique utilisant une nouvelle analyse fréquentielle de la lumière sortante et incidente pour adapter efficacement le taux d’échantillonnage pendant l’intégration. Nous appliquons cette théorie à plusieurs modèles qui correspondent à l’état de l’art en diffusion, octroyant une amélioration possible à leur efficacité et précision.
Resumo:
Ce mémoire contient quelques résultats sur l'intégration numérique. Ils sont liés à la célèbre formule de quadrature de K. F. Gauss. Une généralisation très intéressante de la formule de Gauss a été obtenue par P. Turán. Elle est contenue dans son article publié en 1948, seulement quelques années après la seconde guerre mondiale. Étant données les circonstances défavorables dans lesquelles il se trouvait à l'époque, l'auteur (Turán) a laissé beaucoup de détails à remplir par le lecteur. Par ailleurs, l'article de Turán a inspiré une multitude de recherches; sa formule a été étendue de di érentes manières et plusieurs articles ont été publiés sur ce sujet. Toutefois, il n'existe aucun livre ni article qui contiennent un compte-rendu détaillé des résultats de base, relatifs à la formule de Turán. Je voudrais donc que mon mémoire comporte su samment de détails qui puissent éclairer le lecteur tout en présentant un exposé de ce qui a été fait sur ce sujet. Voici comment nous avons organisé le contenu de ce mémoire. 1-a. La formule de Gauss originale pour les polynômes - L'énoncé ainsi qu'une preuve. 1-b. Le point de vue de Turán - Compte-rendu détaillé des résultats de son article. 2-a. Une formule pour les polynômes trigonométriques analogue à celle de Gauss. 2-b. Une formule pour les polynômes trigonométriques analogue à celle de Turán. 3-a. Deux formules pour les fonctions entières de type exponentiel, analogues à celle de Gauss pour les polynômes. 3-b. Une formule pour les fonctions entières de type exponentiel, analogue à celle de Turán. 4-a. Annexe A - Notions de base sur les polynômes de Legendre. 4-b. Annexe B - Interpolation polynomiale. 4-c. Annexe C - Notions de base sur les fonctions entières de type exponentiel. 4-d. Annexe D - L'article de P. Turán.
Resumo:
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <
Resumo:
En synthèse d'images réalistes, l'intensité finale d'un pixel est calculée en estimant une intégrale de rendu multi-dimensionnelle. Une large portion de la recherche menée dans ce domaine cherche à trouver de nouvelles techniques afin de réduire le coût de calcul du rendu tout en préservant la fidelité et l'exactitude des images résultantes. En tentant de réduire les coûts de calcul afin d'approcher le rendu en temps réel, certains effets réalistes complexes sont souvent laissés de côté ou remplacés par des astuces ingénieuses mais mathématiquement incorrectes. Afin d'accélerer le rendu, plusieurs avenues de travail ont soit adressé directement le calcul de pixels individuels en améliorant les routines d'intégration numérique sous-jacentes; ou ont cherché à amortir le coût par région d'image en utilisant des méthodes adaptatives basées sur des modèles prédictifs du transport de la lumière. L'objectif de ce mémoire, et de l'article résultant, est de se baser sur une méthode de ce dernier type[Durand2005], et de faire progresser la recherche dans le domaine du rendu réaliste adaptatif rapide utilisant une analyse du transport de la lumière basée sur la théorie de Fourier afin de guider et prioriser le lancer de rayons. Nous proposons une approche d'échantillonnage et de reconstruction adaptative pour le rendu de scènes animées illuminées par cartes d'environnement, permettant la reconstruction d'effets tels que les ombres et les réflexions de tous les niveaux fréquentiels, tout en préservant la cohérence temporelle.