4 resultados para Numerical analysis
em Université de Montréal, Canada
Resumo:
Ce document traite premièrement des diverses tentatives de modélisation et de simulation de la nage anguilliforme puis élabore une nouvelle technique, basée sur la méthode de la frontière immergée généralisée et la théorie des poutres de Reissner-Simo. Cette dernière, comme les équations des fluides polaires, est dérivée de la mécanique des milieux continus puis les équations obtenues sont discrétisées afin de les amener à une résolution numérique. Pour la première fois, la théorie des schémas de Runge-Kutta additifs est combinée à celle des schémas de Runge-Kutta-Munthe-Kaas pour engendrer une méthode d’ordre de convergence formel arbitraire. De plus, les opérations d’interpolation et d’étalement sont traitées d’un nouveau point de vue qui suggère l’usage des splines interpolatoires nodales en lieu et place des fonctions d’étalement traditionnelles. Enfin, de nombreuses vérifications numériques sont faites avant de considérer les simulations de la nage.
Resumo:
Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
En synthèse d’images, reproduire les effets complexes de la lumière sur des matériaux transluminescents, tels que la cire, le marbre ou la peau, contribue grandement au réalisme d’une image. Malheureusement, ce réalisme supplémentaire est couteux en temps de calcul. Les modèles basés sur la théorie de la diffusion visent à réduire ce coût en simulant le comportement physique du transport de la lumière sous surfacique tout en imposant des contraintes de variation sur la lumière incidente et sortante. Une composante importante de ces modèles est leur application à évaluer hiérarchiquement l’intégrale numérique de l’illumination sur la surface d’un objet. Cette thèse révise en premier lieu la littérature actuelle sur la simulation réaliste de la transluminescence, avant d’investiguer plus en profondeur leur application et les extensions des modèles de diffusion en synthèse d’images. Ainsi, nous proposons et évaluons une nouvelle technique d’intégration numérique hiérarchique utilisant une nouvelle analyse fréquentielle de la lumière sortante et incidente pour adapter efficacement le taux d’échantillonnage pendant l’intégration. Nous appliquons cette théorie à plusieurs modèles qui correspondent à l’état de l’art en diffusion, octroyant une amélioration possible à leur efficacité et précision.