3 resultados para Numerical One-Loop Integration

em Université de Montréal, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

En synthèse d’images, reproduire les effets complexes de la lumière sur des matériaux transluminescents, tels que la cire, le marbre ou la peau, contribue grandement au réalisme d’une image. Malheureusement, ce réalisme supplémentaire est couteux en temps de calcul. Les modèles basés sur la théorie de la diffusion visent à réduire ce coût en simulant le comportement physique du transport de la lumière sous surfacique tout en imposant des contraintes de variation sur la lumière incidente et sortante. Une composante importante de ces modèles est leur application à évaluer hiérarchiquement l’intégrale numérique de l’illumination sur la surface d’un objet. Cette thèse révise en premier lieu la littérature actuelle sur la simulation réaliste de la transluminescence, avant d’investiguer plus en profondeur leur application et les extensions des modèles de diffusion en synthèse d’images. Ainsi, nous proposons et évaluons une nouvelle technique d’intégration numérique hiérarchique utilisant une nouvelle analyse fréquentielle de la lumière sortante et incidente pour adapter efficacement le taux d’échantillonnage pendant l’intégration. Nous appliquons cette théorie à plusieurs modèles qui correspondent à l’état de l’art en diffusion, octroyant une amélioration possible à leur efficacité et précision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse examine les impacts sur la morphologie des tributaires du fleuve Saint-Laurent des changements dans leur débit et leur niveau de base engendrés par les changements climatiques prévus pour la période 2010–2099. Les tributaires sélectionnés (rivières Batiscan, Richelieu, Saint-Maurice, Saint-François et Yamachiche) ont été choisis en raison de leurs différences de taille, de débit et de contexte morphologique. Non seulement ces tributaires subissent-ils un régime hydrologique modifié en raison des changements climatiques, mais leur niveau de base (niveau d’eau du fleuve Saint-Laurent) sera aussi affecté. Le modèle morphodynamique en une dimension (1D) SEDROUT, à l’origine développé pour des rivières graveleuses en mode d’aggradation, a été adapté pour le contexte spécifique des tributaires des basses-terres du Saint-Laurent afin de simuler des rivières sablonneuses avec un débit quotidien variable et des fluctuations du niveau d’eau à l’aval. Un module pour simuler le partage des sédiments autour d’îles a aussi été ajouté au modèle. Le modèle ainsi amélioré (SEDROUT4-M), qui a été testé à l’aide de simulations à petite échelle et avec les conditions actuelles d’écoulement et de transport de sédiments dans quatre tributaires du fleuve Saint-Laurent, peut maintenant simuler une gamme de problèmes morphodynamiques de rivières. Les changements d’élévation du lit et d’apport en sédiments au fleuve Saint-Laurent pour la période 2010–2099 ont été simulés avec SEDROUT4-M pour les rivières Batiscan, Richelieu et Saint-François pour toutes les combinaisons de sept régimes hydrologiques (conditions actuelles et celles prédites par trois modèles de climat globaux (MCG) et deux scénarios de gaz à effet de serre) et de trois scénarios de changements du niveau de base du fleuve Saint-Laurent (aucun changement, baisse graduelle, baisse abrupte). Les impacts sur l’apport de sédiments et l’élévation du lit diffèrent entre les MCG et semblent reliés au statut des cours d’eau (selon qu’ils soient en état d’aggradation, de dégradation ou d’équilibre), ce qui illustre l’importance d’examiner plusieurs rivières avec différents modèles climatiques afin d’établir des tendances dans les effets des changements climatiques. Malgré le fait que le débit journalier moyen et le débit annuel moyen demeurent près de leur valeur actuelle dans les trois scénarios de MCG, des changements importants dans les taux de transport de sédiments simulés pour chaque tributaire sont observés. Ceci est dû à l’impact important de fortes crues plus fréquentes dans un climat futur de même qu’à l’arrivée plus hâtive de la crue printanière, ce qui résulte en une variabilité accrue dans les taux de transport en charge de fond. Certaines complications avec l’approche de modélisation en 1D pour représenter la géométrie complexe des rivières Saint-Maurice et Saint-François suggèrent qu’une approche bi-dimensionnelle (2D) devrait être sérieusement considérée afin de simuler de façon plus exacte la répartition des débits aux bifurcations autour des îles. La rivière Saint-François est utilisée comme étude de cas pour le modèle 2D H2D2, qui performe bien d’un point de vue hydraulique, mais qui requiert des ajustements pour être en mesure de pleinement simuler les ajustements morphologiques des cours d’eau.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce mémoire contient quelques résultats sur l'intégration numérique. Ils sont liés à la célèbre formule de quadrature de K. F. Gauss. Une généralisation très intéressante de la formule de Gauss a été obtenue par P. Turán. Elle est contenue dans son article publié en 1948, seulement quelques années après la seconde guerre mondiale. Étant données les circonstances défavorables dans lesquelles il se trouvait à l'époque, l'auteur (Turán) a laissé beaucoup de détails à remplir par le lecteur. Par ailleurs, l'article de Turán a inspiré une multitude de recherches; sa formule a été étendue de di érentes manières et plusieurs articles ont été publiés sur ce sujet. Toutefois, il n'existe aucun livre ni article qui contiennent un compte-rendu détaillé des résultats de base, relatifs à la formule de Turán. Je voudrais donc que mon mémoire comporte su samment de détails qui puissent éclairer le lecteur tout en présentant un exposé de ce qui a été fait sur ce sujet. Voici comment nous avons organisé le contenu de ce mémoire. 1-a. La formule de Gauss originale pour les polynômes - L'énoncé ainsi qu'une preuve. 1-b. Le point de vue de Turán - Compte-rendu détaillé des résultats de son article. 2-a. Une formule pour les polynômes trigonométriques analogue à celle de Gauss. 2-b. Une formule pour les polynômes trigonométriques analogue à celle de Turán. 3-a. Deux formules pour les fonctions entières de type exponentiel, analogues à celle de Gauss pour les polynômes. 3-b. Une formule pour les fonctions entières de type exponentiel, analogue à celle de Turán. 4-a. Annexe A - Notions de base sur les polynômes de Legendre. 4-b. Annexe B - Interpolation polynomiale. 4-c. Annexe C - Notions de base sur les fonctions entières de type exponentiel. 4-d. Annexe D - L'article de P. Turán.