1 resultado para Numerical Computations
em Université de Montréal, Canada
Resumo:
La représentation d'une surface, son lissage et son utilisation pour l'identification, la comparaison, la classification, et l'étude des variations de volume, de courbure ou de topologie sont omniprésentes dans l'aire de la numérisation. Parmi les méthodes mathématiques, nous avons retenu les transformations difféomorphiques d'un pattern de référence. Il y a un grand intérêt théorique et numérique à approcher un difféomorphisme arbitraire par des difféomorphismes engendrés par des champs de vitesses. Sur le plan théorique la question est : "est-ce que le sous-groupe de difféomorphismes engendrés par des champs de vitesses est dense dans le groupe plus large de Micheletti pour la métrique de Courant ?" Malgré quelques progrès réalisés ici, cette question demeure ouverte. Les pistes empruntées ont alors convergé vers le sous-groupe de Azencott et de Trouvé et sa métrique dans le cadre de l'imagerie. Elle correspond à une notion de géodésique entre deux difféomorphismes dans leur sous-groupe. L'optimisation est utilisée pour obtenir un système d'équations état adjoint caractérisant la solution optimale du problème d'identification à partir des observations. Cette approche est adaptée à l'identification de surfaces obtenues par un numériseur tel que, par exemple, le scan d'un visage. Ce problème est beaucoup plus difficile que celui d'imagerie. On doit alors introduire un système de référence courbe et une surface à facettes pour les calculs. On donne la formulation du problème d'identification et du calcul du changement de volume par rapport à un scan de référence.