7 resultados para Numbers, Rational
em Université de Montréal, Canada
Resumo:
The rationalizability of a choice function on arbitrary domains by means of a transitive relation has been analyzed thoroughly in the literature. Moreover, characterizations of various versions of consistent rationalizability have appeared in recent contributions. However, not much seems to be known when the coherence property of quasi-transitivity or that of P-acyclicity is imposed on a rationalization. The purpose of this paper is to fill this significant gap. We provide characterizations of all forms of rationalizability involving quasi-transitive or P-acyclical rationalizations on arbitrary domains.
Resumo:
The rationalizability of a choice function on an arbitrary domain under various coherence properties has received a considerable amount of attention both in the long-established and in the recent literature. Because domain closedness conditions play an important role in much of rational choice theory, we examine the consequences of these requirements on the logical relationships among different versions of rationalizability. It turns out that closedness under intersection does not lead to any results differing from those obtained on arbitrary domains. In contrast, closedness under union allows us to prove an additional implication.
Resumo:
A classical argument of de Finetti holds that Rationality implies Subjective Expected Utility (SEU). In contrast, the Knightian distinction between Risk and Ambiguity suggests that a rational decision maker would obey the SEU paradigm when the information available is in some sense good, and would depart from it when the information available is not good. Unlike de Finetti's, however, this view does not rely on a formal argument. In this paper, we study the set of all information structures that might be availabe to a decision maker, and show that they are of two types: those compatible with SEU theory and those for which SEU theory must fail. We also show that the former correspond to "good" information, while the latter correspond to information that is not good. Thus, our results provide a formalization of the distinction between Risk and Ambiguity. As a consequence of our main theorem (Theorem 2, Section 8), behavior not-conforming to SEU theory is bound to emerge in the presence of Ambiguity. We give two examples of situations of Ambiguity. One concerns the uncertainty on the class of measure zero events, the other is a variation on Ellberg's three-color urn experiment. We also briefly link our results to two other strands of literature: the study of ambiguous events and the problem of unforeseen contingencies. We conclude the paper by re-considering de Finetti's argument in light of our findings.
Resumo:
Notre recherche s’intéresse à la transformation des rapports aux nombres rationnels d’élèves de 1re secondaire présentant des difficultés d’apprentissage. Comme le montrent plusieurs recherches, le défi majeur auquel sont confrontés les enseignants, ainsi que les chercheurs, est de ne pas s’enliser dans le cercle vicieux d’une réduction des enjeux de l’apprentissage des nombres rationnels et des possibilités d’apprentissage de l’élève en difficultés d’apprentissage, cet élève n’ayant pas ainsi la chance de mettre à l’épreuve ses connaissances, d’oser s’engager dans une démarche de construction de connaissances et d’apprécier les effets de son engagement cognitif. Afin de relever ce défi, nous avons misé sur l’intégration harmonieuse de situations problèmes. Il nous a semblé que, dans une démarche d’acculturation, l’approche écologique soit tout indiquée pour penser une «dé-transposition/re-transposition didactique» (Antibi et Brousseau, 2000) et reconstruire une mémoire porteuse d’espoirs (Brousseau et Centeno, 1998). Notre recherche vise à: 1) caractériser la progression des démarches d’acculturation institutionnelle de l’enseignant, du chercheur et des élèves et leurs effets sur les processus d’élaboration et de gestion des situations d’enseignement; 2) préciser l’évolution des connaissances, des habitus et des rapports des élèves aux nombres rationnels. Notre intégration en classe, d’une durée de 6 mois, nous a permis d’apprécier les effets du processus d’acculturation. Nous avons noté des changements importants dans la topogénèse et la chronogénèse des savoirs (Mercier, 1995); alors qu’à notre entrée, l’enseignante adoptait la démarche suivante, soit effectuer un exposé des savoirs et des démarches que les élèves devaient consigner dans leurs notes de cours, afin de pouvoir par la suite s’y référer pour effectuer des exercices et résoudre des problèmes, elle modifiait progressivement cette démarche en proposant des problèmes qui pouvaient permettre aux élèves de coordonner diverses connaissances et de construire ainsi des savoirs auxquels ils pouvaient faire référence dans la construction de leurs notes de cours qu’ils pouvaient par la suite consulter pour effectuer divers exercices. Nous avons également pu apprécier les effets de l’intégration de diverses représentations des nombres rationnels sur l’avancée du temps didactique (Mercier, 1995) et la transformation des rapports et habitus des élèves aux nombres rationnels (Bourdieu, 1980). Ces changements se sont manifestés, entre autres, par : a) un investissement important lors de situations complexes; b) l’adoption de pratiques mathématiques plus attentives aux données numériques et aux relations entre ces données; c) l’apparition de conduites « inusitées » [ex. coordination de divers registres sémiotiques,exploitation de compositions additives/multiplicatives et d’écritures non conventionnelles]. De telles conduites sont similaires à celles observées dans plusieurs recherches effectuées auprès d’une population d’élèves qui ne présentent pas de difficultés d’apprentissage (Moss et Case, 1999). Les résultats de notre recherche soutiennent donc l’importance indéniable de considérer les élèves en difficultés comme étant mathématiquement compétents, comme le soulignent Empson (2003) et Houssart (2002). Il nous semble enfin important de souligner que le travail sur la représentation des nombres rationnels a constitué une niche particulièrement fertile, pour un travail fondamental sur les nombres rationnels, travail qui puisse permettre aux élèves de poursuivre plus harmonieusement leurs apprentissages, les nombres rationnels étant des objets de savoir incontournables.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Anne Merminod de l'Université McGill est récipiendaire du 2ème prix du concours de la bourse d'initiation à la recherche offerte par le Regroupement Droit et changements aux étudiants du baccalauréat en droit.