5 resultados para Nonlinear static analysis
em Université de Montréal, Canada
Resumo:
Analyser le code permet de vérifier ses fonctionnalités, détecter des bogues ou améliorer sa performance. L’analyse du code peut être statique ou dynamique. Des approches combinants les deux analyses sont plus appropriées pour les applications de taille industrielle où l’utilisation individuelle de chaque approche ne peut fournir les résultats souhaités. Les approches combinées appliquent l’analyse dynamique pour déterminer les portions à problèmes dans le code et effectuent par la suite une analyse statique concentrée sur les parties identifiées. Toutefois les outils d’analyse dynamique existants génèrent des données imprécises ou incomplètes, ou aboutissent en un ralentissement inacceptable du temps d’exécution. Lors de ce travail, nous nous intéressons à la génération de graphes d’appels dynamiques complets ainsi que d’autres informations nécessaires à la détection des portions à problèmes dans le code. Pour ceci, nous faisons usage de la technique d’instrumentation dynamique du bytecode Java pour extraire l’information sur les sites d’appels, les sites de création d’objets et construire le graphe d’appel dynamique du programme. Nous démontrons qu’il est possible de profiler dynamiquement une exécution complète d’une application à temps d’exécution non triviale, et d’extraire la totalité de l’information à un coup raisonnable. Des mesures de performance de notre profileur sur trois séries de benchmarks à charges de travail diverses nous ont permis de constater que la moyenne du coût de profilage se situe entre 2.01 et 6.42. Notre outil de génération de graphes dynamiques complets, nommé dyko, constitue également une plateforme extensible pour l’ajout de nouvelles approches d’instrumentation. Nous avons testé une nouvelle technique d’instrumentation des sites de création d’objets qui consiste à adapter les modifications apportées par l’instrumentation au bytecode de chaque méthode. Nous avons aussi testé l’impact de la résolution des sites d’appels sur la performance générale du profileur.
Resumo:
Projet de recherche réalisé en 2014-2015 avec l'appui du Fonds de recherche du Québec – Société et culture.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
This paper studies the application of the simulated method of moments (SMM) for the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models. Monte Carlo analysis is employed to examine the small-sample properties of SMM in specifications with different curvature. Results show that SMM is computationally efficient and delivers accurate estimates, even when the simulated series are relatively short. However, asymptotic standard errors tend to overstate the actual variability of the estimates and, consequently, statistical inference is conservative. A simple strategy to incorporate priors in a method of moments context is proposed. An empirical application to the macroeconomic effects of rare events indicates that negatively skewed productivity shocks induce agents to accumulate additional capital and can endogenously generate asymmetric business cycles.