2 resultados para Nonlinear algebraic systems

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa- tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer- taines conditions aux limites. Dans le chapitre trois, nous introduirons une notion de tube-solution pour obtenir des théorèmes d’existence pour des systèmes d’équations différentielles du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de sous- et sur-solutions pour le problème aux limites de l’équation différentielle du troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois- sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34]. Le chapitre suivant porte sur l’existence de solutions pour deux types de sys- tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis- tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes et à une échelle de temps quelconque, un résultat obtenu pour des équations aux différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte- nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60]. Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in- clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore une fois à l’aide d’une hypothèse de tube-solution adaptée au problème. Au chapitre six, nous traitons l’existence de solutions pour des systèmes d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse que ces auteurs utilisent pour faire la majoration a priori est un cas particulier de notre hypothèse de tube-solution pour ce type de systèmes. Notons également que notre définition de tube-solution généralise aux systèmes les notions de sous- et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi, nous généralisons également des résultats obtenus pour des équations aux échelles de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis- tence pour un système dont le membre droit des équations dépend de la ∆-dérivée de la fonction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Un objectif principal du génie logiciel est de pouvoir produire des logiciels complexes, de grande taille et fiables en un temps raisonnable. La technologie orientée objet (OO) a fourni de bons concepts et des techniques de modélisation et de programmation qui ont permis de développer des applications complexes tant dans le monde académique que dans le monde industriel. Cette expérience a cependant permis de découvrir les faiblesses du paradigme objet (par exemples, la dispersion de code et le problème de traçabilité). La programmation orientée aspect (OA) apporte une solution simple aux limitations de la programmation OO, telle que le problème des préoccupations transversales. Ces préoccupations transversales se traduisent par la dispersion du même code dans plusieurs modules du système ou l’emmêlement de plusieurs morceaux de code dans un même module. Cette nouvelle méthode de programmer permet d’implémenter chaque problématique indépendamment des autres, puis de les assembler selon des règles bien définies. La programmation OA promet donc une meilleure productivité, une meilleure réutilisation du code et une meilleure adaptation du code aux changements. Très vite, cette nouvelle façon de faire s’est vue s’étendre sur tout le processus de développement de logiciel en ayant pour but de préserver la modularité et la traçabilité, qui sont deux propriétés importantes des logiciels de bonne qualité. Cependant, la technologie OA présente de nombreux défis. Le raisonnement, la spécification, et la vérification des programmes OA présentent des difficultés d’autant plus que ces programmes évoluent dans le temps. Par conséquent, le raisonnement modulaire de ces programmes est requis sinon ils nécessiteraient d’être réexaminés au complet chaque fois qu’un composant est changé ou ajouté. Il est cependant bien connu dans la littérature que le raisonnement modulaire sur les programmes OA est difficile vu que les aspects appliqués changent souvent le comportement de leurs composantes de base [47]. Ces mêmes difficultés sont présentes au niveau des phases de spécification et de vérification du processus de développement des logiciels. Au meilleur de nos connaissances, la spécification modulaire et la vérification modulaire sont faiblement couvertes et constituent un champ de recherche très intéressant. De même, les interactions entre aspects est un sérieux problème dans la communauté des aspects. Pour faire face à ces problèmes, nous avons choisi d’utiliser la théorie des catégories et les techniques des spécifications algébriques. Pour apporter une solution aux problèmes ci-dessus cités, nous avons utilisé les travaux de Wiels [110] et d’autres contributions telles que celles décrites dans le livre [25]. Nous supposons que le système en développement est déjà décomposé en aspects et classes. La première contribution de notre thèse est l’extension des techniques des spécifications algébriques à la notion d’aspect. Deuxièmement, nous avons défini une logique, LA , qui est utilisée dans le corps des spécifications pour décrire le comportement de ces composantes. La troisième contribution consiste en la définition de l’opérateur de tissage qui correspond à la relation d’interconnexion entre les modules d’aspect et les modules de classe. La quatrième contribution concerne le développement d’un mécanisme de prévention qui permet de prévenir les interactions indésirables dans les systèmes orientés aspect.