12 resultados para Nonlinear Schrodinger-Equation
em Université de Montréal, Canada
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic concusions remain valid.
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.
Resumo:
We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.
Resumo:
This paper derives optimal monetary policy rules in setups where certainty equivalence does not hold because either central bank preferences are not quadratic, and/or the aggregate supply relation is nonlinear. Analytical results show that these features lead to sign and size asymmetries, and nonlinearities in the policy rule. Reduced-form estimates indicate that US monetary policy can be characterized by a nonlinear policy rule after 1983, but not before 1979. This finding is consistent with the view that the Fed's inflation preferences during the Volcker-Greenspan regime differ considerably from the ones during the Burns-Miller regime.
Resumo:
Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.
Resumo:
This paper studies the application of the simulated method of moments (SMM) for the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models. Monte Carlo analysis is employed to examine the small-sample properties of SMM in specifications with different curvature. Results show that SMM is computationally efficient and delivers accurate estimates, even when the simulated series are relatively short. However, asymptotic standard errors tend to overstate the actual variability of the estimates and, consequently, statistical inference is conservative. A simple strategy to incorporate priors in a method of moments context is proposed. An empirical application to the macroeconomic effects of rare events indicates that negatively skewed productivity shocks induce agents to accumulate additional capital and can endogenously generate asymmetric business cycles.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Cette thèse s’intéresse à la modélisation magnétohydrodynamique des écoulements de fluides conducteurs d’électricité multi-échelles en mettant l’emphase sur deux applications particulières de la physique solaire: la modélisation des mécanismes des variations de l’irradiance via la simulation de la dynamo globale et la reconnexion magnétique. Les variations de l’irradiance sur les périodes des jours, des mois et du cycle solaire de 11 ans sont très bien expliquées par le passage des régions actives à la surface du Soleil. Cependant, l’origine ultime des variations se déroulant sur les périodes décadales et multi-décadales demeure un sujet controversé. En particulier, une certaine école de pensée affirme qu’une partie de ces variations à long-terme doit provenir d’une modulation de la structure thermodynamique globale de l’étoile, et que les seuls effets de surface sont incapables d’expliquer la totalité des fluctuations. Nous présentons une simulation globale de la convection solaire produisant un cycle magnétique similaire en plusieurs aspects à celui du Soleil, dans laquelle le flux thermique convectif varie en phase avec l’ ́energie magnétique. La corrélation positive entre le flux convectif et l’énergie magnétique supporte donc l’idée qu’une modulation de la structure thermodynamique puisse contribuer aux variations à long-terme de l’irradiance. Nous analysons cette simulation dans le but d’identifier le mécanisme physique responsable de la corrélation en question et pour prédire de potentiels effets observationnels résultant de la modulation structurelle. La reconnexion magnétique est au coeur du mécanisme de plusieurs phénomènes de la physique solaire dont les éruptions et les éjections de masse, et pourrait expliquer les températures extrêmes caractérisant la couronne. Une correction aux trajectoires du schéma semi-Lagrangien classique est présentée, qui est basée sur la solution à une équation aux dérivées partielles nonlinéaire du second ordre: l’équation de Monge-Ampère. Celle-ci prévient l’intersection des trajectoires et assure la stabilité numérique des simulations de reconnexion magnétique pour un cas de magnéto-fluide relaxant vers un état d’équilibre.