2 resultados para Neural Control Systems

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'insuffisance cardiaque est une maladie à grande incidence dont le traitement définitif est difficile. Les pompes d'assistance ventriculaire ont été proposées comme thérapie alternative à long terme, mais la technologie est relativement jeune et selon son design, axial ou centrifuge, le dispositif favorise soit l'hémolyse, soit la stagnation de l'écoulement sanguin. Les pompes à écoulement mixte, combinant certaines propriétés des deux types, ont été proposées comme solution intermédiaire. Pour évaluer leurs performances, nous avons effectué des comparaisons numériques entre huit pompes, deux axiales, deux centrifuges, et quatre mixtes, en employant un modèle Windkessel du système cardiovasculaire avec paramètres optimisés pour l'insuffisance cardiaque résolu avec une méthode Radau IIA3, une méthode de résolution de système d'équations différentielles ordinaires L-stable appartenant à la famille des méthodes Runge-Kutta implicites. Nos résultats semblent suggérer que les pompes d'assistance mixtes ne démontrent qu'un léger avantage comparativement aux autres types en terme de performance optimale dans le cas de l'insuffisance cardiaque, mais il faudrait effectuer plus d'essais numériques avec un modèle plus complet, entre autres avec contrôles nerveux implémentés.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les mécanismes neuronaux contrôlant la respiration sont présentement explorés à l’aide de plusieurs modèles animaux incluant le rat et la grenouille. Nous avons utilisé la lamproie comme modèle animal nous permettant de caractériser les réseaux de neurones du tronc cérébral qui génèrent et modulent le rythme respiratoire. Nous avons d’abord caractérisé une nouvelle population de neurones, dans le groupe respiratoire paratrigéminal (pTRG), une région du tronc cérébral essentielle à la genèse du rythme respiratoire chez la lamproie. Les neurones de cette région sont actifs en phase avec le rythme respiratoire. Nous avons montré que ces neurones possèdent une arborisation axonale complexe, incluant des projections bilatérales vers les groupes de motoneurones du tronc cérébral qui activent les branchies ainsi que des connexions reliant les pTRG de chaque côté du tronc cérébral. Ces résultats montrent que le pTRG contient un groupe de cellules qui active les motoneurones respiratoires des deux côtés et qui pourrait être impliqué dans la synchronisation bilatérale du rythme respiratoire. Nous avons ensuite étudié les mécanismes neuronaux par lesquels le rythme respiratoire est augmenté en lien avec l’effort physique. Nous avons montré que la région locomotrice du mésencéphale (MLR), en plus de son rôle dans la locomotion, active les centres respiratoires pendant la nage, et même en anticipation. Les neurones de la MLR projetant vers les centres locomoteurs et respiratoires sont ségrégés anatomiquement, les neurones localisés plus dorsalement étant ceux qui possèdent des projections vers les centres respiratoires. Nous avons aboli la contribution de la partie dorsale de la MLR aux changements respiratoires en injectant des bloqueurs des récepteurs glutamatergiques localement, sur des préparations semi-intactes. Nous avons montré que lors d’épisodes de nage, une majeure partie de l’effet respiratoire est abolie par ces injections, suggérant un rôle prépondérant des neurones de cette région dans l’augmentation respiratoire pendant la locomotion. Nos résultats confirment que le rythme respiratoire est généré par une région rostrolatérale du pons de la lamproie et montrent que des connexions des centres locomoteurs arrivent directement à cette région et pourraient être impliquées dans l’augmentation respiratoire reliée à l’effort physique.