8 resultados para Networks analysis
em Université de Montréal, Canada
Resumo:
L'étude de la formation d'une communauté épistémique québécoise en santé publique en ayant recours à l'interactionnisme-structural permet d'appréhender ce phénomène social sous l'angle d'une influence réciproque entre d'une part des acteurs sociaux interagissant entre-eux et d'autre part, des conceptualisations variées des objets de santé publique; ces éléments sociaux et sémantiques subissent des transformations simultanées. Notre étude démontre et illustre qu'au même moment où un réseau social de chercheurs prend forme, une thématique nouvelle prend place et rallie ces mêmes chercheurs, non pas seulement dans leurs relations sociales, mais dans les idées qu'ils manipulent lors de leur travail de production et de diffusion de connaissances; les identités sociales se lient, mais pas au hasard, parce qu'elles partagent des éléments sémantiques communs. C'est notamment en explorant 20 ans de collaborations scientifiques à l'aide d'outils d'analyse de réseaux, d'analyse en composantes discrètes et par l'exporation de treillis de Galois que cette étude a été menée. Notre approche est principalement exploratoire et une attention toute particulière est portée sur les aspects méthodologiques et théoriques du travail de recherche scientifique.
Resumo:
Les professions ont acquis une importance considérable à travers les sociétés modernes. Lors de la modernisation du Code des professions au Québec, les membres de l’Ordre des psychologues du Québec (OPQ) ont eu à se positionner sur les enjeux entourant les développements de leur profession. Ce mémoire analyse le lien entre la structure relationnelle constitutive de la socialisation effectuée par ce groupe professionnel. Ceci, au moment de la redéfinition du cadre législatif en matière de psychothérapie. Des analyses de réseaux sur onze temps, de deux types de capital social, permettent de saisir les corollaires des structures relationnelles sur la socialisation de l’Ordre professionnel. Puis, les discours écrits sur la modernisation dans leur revue professionnelle sont résumés dans un narratif permettant l’analyse des stratégies de leur socialisation. Bien que contingent, la forme de la structure relationnelle stabilise la socialisation des membres. La structure relationnelle amène le capital social collectif à densifier le réseau des relations internes du groupe et permet l’essor, par l’intermédiarité des membres ayant du capital social individuel, d’une culture réseau. Ces membres, bien positionnés dans l’ordre, conduisent la socialisation de l’ensemble du groupe durant les enjeux rencontrés. Le narratif corrobore la concordance des stratégies de socialisation des membres de l’OPQ aux objectifs des principes de l’Office des professions du Québec. Puisque névralgique, bien que contingent, la structure relationnelle de la socialisation participe de la différenciation de degré entre le modèle professionnel et les autres types de métiers.
Resumo:
La transcription, la maturation d’ARN, et le remodelage de la chromatine sont tous des processus centraux dans l'interprétation de l'information contenue dans l’ADN. Bien que beaucoup de complexes de protéines formant la machinerie cellulaire de transcription aient été étudiés, plusieurs restent encore à identifier et caractériser. En utilisant une approche protéomique, notre laboratoire a purifié plusieurs composantes de la machinerie de transcription de l’ARNPII humaine par double chromatographie d’affinité "TAP". Cette procédure permet l'isolement de complexes protéiques comme ils existent vraisemblablement in vivo dans les cellules mammifères, et l'identification de partenaires d'interactions par spectrométrie de masse. Les interactions protéiques qui sont validées bioinformatiquement, sont choisies et utilisées pour cartographier un réseau connectant plusieurs composantes de la machinerie transcriptionnelle. En appliquant cette procédure, notre laboratoire a identifié, pour la première fois, un groupe de protéines, qui interagit physiquement et fonctionnellement avec l’ARNPII humaine. Les propriétés de ces protéines suggèrent un rôle dans l'assemblage de complexes à plusieurs sous-unités, comme les protéines d'échafaudage et chaperonnes. L'objectif de mon projet était de continuer la caractérisation du réseau de complexes protéiques impliquant les facteurs de transcription. Huit nouveaux partenaires de l’ARNPII (PIH1D1, GPN3, WDR92, PFDN2, KIAA0406, PDRG1, CCT4 et CCT5) ont été purifiés par la méthode TAP, et la spectrométrie de masse a permis d’identifier de nouvelles interactions. Au cours des années, l’analyse par notre laboratoire des mécanismes de la transcription a contribué à apporter de nouvelles connaissances et à mieux comprendre son fonctionnement. Cette connaissance est essentielle au développement de médicaments qui cibleront les mécanismes de la transcription.
Resumo:
La douleur est une expérience perceptive comportant de nombreuses dimensions. Ces dimensions de douleur sont inter-reliées et recrutent des réseaux neuronaux qui traitent les informations correspondantes. L’élucidation de l'architecture fonctionnelle qui supporte les différents aspects perceptifs de l'expérience est donc une étape fondamentale pour notre compréhension du rôle fonctionnel des différentes régions de la matrice cérébrale de la douleur dans les circuits corticaux qui sous tendent l'expérience subjective de la douleur. Parmi les diverses régions du cerveau impliquées dans le traitement de l'information nociceptive, le cortex somatosensoriel primaire et secondaire (S1 et S2) sont les principales régions généralement associées au traitement de l'aspect sensori-discriminatif de la douleur. Toutefois, l'organisation fonctionnelle dans ces régions somato-sensorielles n’est pas complètement claire et relativement peu d'études ont examiné directement l'intégration de l'information entre les régions somatiques sensorielles. Ainsi, plusieurs questions demeurent concernant la relation hiérarchique entre S1 et S2, ainsi que le rôle fonctionnel des connexions inter-hémisphériques des régions somatiques sensorielles homologues. De même, le traitement en série ou en parallèle au sein du système somatosensoriel constitue un autre élément de questionnement qui nécessite un examen plus approfondi. Le but de la présente étude était de tester un certain nombre d'hypothèses sur la causalité dans les interactions fonctionnelle entre S1 et S2, alors que les sujets recevaient des chocs électriques douloureux. Nous avons mis en place une méthode de modélisation de la connectivité, qui utilise une description de causalité de la dynamique du système, afin d'étudier les interactions entre les sites d'activation définie par un ensemble de données provenant d'une étude d'imagerie fonctionnelle. Notre paradigme est constitué de 3 session expérimentales en utilisant des chocs électriques à trois différents niveaux d’intensité, soit modérément douloureux (niveau 3), soit légèrement douloureux (niveau 2), soit complètement non douloureux (niveau 1). Par conséquent, notre paradigme nous a permis d'étudier comment l'intensité du stimulus est codé dans notre réseau d'intérêt, et comment la connectivité des différentes régions est modulée dans les conditions de stimulation différentes. Nos résultats sont en faveur du mode sériel de traitement de l’information somatosensorielle nociceptive avec un apport prédominant de la voie thalamocorticale vers S1 controlatérale au site de stimulation. Nos résultats impliquent que l'information se propage de S1 controlatéral à travers notre réseau d'intérêt composé des cortex S1 bilatéraux et S2. Notre analyse indique que la connexion S1→S2 est renforcée par la douleur, ce qui suggère que S2 est plus élevé dans la hiérarchie du traitement de la douleur que S1, conformément aux conclusions précédentes neurophysiologiques et de magnétoencéphalographie. Enfin, notre analyse fournit des preuves de l'entrée de l'information somatosensorielle dans l'hémisphère controlatéral au côté de stimulation, avec des connexions inter-hémisphériques responsable du transfert de l'information à l'hémisphère ipsilatéral.
Resumo:
Naïvement perçu, le processus d’évolution est une succession d’événements de duplication et de mutations graduelles dans le génome qui mènent à des changements dans les fonctions et les interactions du protéome. La famille des hydrolases de guanosine triphosphate (GTPases) similaire à Ras constitue un bon modèle de travail afin de comprendre ce phénomène fondamental, car cette famille de protéines contient un nombre limité d’éléments qui diffèrent en fonctionnalité et en interactions. Globalement, nous désirons comprendre comment les mutations singulières au niveau des GTPases affectent la morphologie des cellules ainsi que leur degré d’impact sur les populations asynchrones. Mon travail de maîtrise vise à classifier de manière significative différents phénotypes de la levure Saccaromyces cerevisiae via l’analyse de plusieurs critères morphologiques de souches exprimant des GTPases mutées et natives. Notre approche à base de microscopie et d’analyses bioinformatique des images DIC (microscopie d’interférence différentielle de contraste) permet de distinguer les phénotypes propres aux cellules natives et aux mutants. L’emploi de cette méthode a permis une détection automatisée et une caractérisation des phénotypes mutants associés à la sur-expression de GTPases constitutivement actives. Les mutants de GTPases constitutivement actifs Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V ont été analysés avec succès. En effet, l’implémentation de différents algorithmes de partitionnement, permet d’analyser des données qui combinent les mesures morphologiques de population native et mutantes. Nos résultats démontrent que l’algorithme Fuzzy C-Means performe un partitionnement efficace des cellules natives ou mutantes, où les différents types de cellules sont classifiés en fonction de plusieurs facteurs de formes cellulaires obtenus à partir des images DIC. Cette analyse démontre que les mutations Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V induisent respectivement des phénotypes amorphe, allongé, rond et large qui sont représentés par des vecteurs de facteurs de forme distincts. Ces distinctions sont observées avec différentes proportions (morphologie mutante / morphologie native) dans les populations de mutants. Le développement de nouvelles méthodes automatisées d’analyse morphologique des cellules natives et mutantes s’avère extrêmement utile pour l’étude de la famille des GTPases ainsi que des résidus spécifiques qui dictent leurs fonctions et réseau d’interaction. Nous pouvons maintenant envisager de produire des mutants de GTPases qui inversent leur fonction en ciblant des résidus divergents. La substitution fonctionnelle est ensuite détectée au niveau morphologique grâce à notre nouvelle stratégie quantitative. Ce type d’analyse peut également être transposé à d’autres familles de protéines et contribuer de manière significative au domaine de la biologie évolutive.
Who influence the music tastes of adolescents? A study on interpersonal influence in social networks
Resumo:
Research on music information behavior demonstrates that people rely primarily on others to discover new music. This paper reports on a qualitative study aiming at exploring more in-depth how music information circulates within the social networks of late adolescents and the role the different people involved in the process play. In-depth interviews were conducted with 19 adolescents (15-17 years old). The analysis revealed that music opinion leaders showed eagerness to share music information, tended to seek music information on an ongoing basis, and were perceived as being more knowledgeable than others in music. It was found that the ties that connected participants to opinion leaders were predominantly strong ties, which suggests that trustworthiness is an important component of credibility. These findings could potentially help identify new avenues for the improvement of music recommender systems.
Resumo:
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.
Resumo:
This article seeks to explain how and why groups and networks of undocumented migrants mobilizing in Berlin, Montréal, and Paris since the beginning of the 2000s construct different types of claims. The authors explore the relationship between undocumented migrants and state authorities at the local level through the concept of the citizenship regime and its specific application to undocumented migrants (which they describe as the “borderline citizenship regime”). Despite their common formal exclusion from citizenship, nonstatus migrants experience different degrees and forms of exclusion in their daily lives, in terms of access to certain rights and services, recognition, and belonging within the state (whether through formally or nonformally recognized means). As a result, they have an opportunity to create different, specific forms of leeway in the society in which they live. The concurrence of these different degrees of exclusion and different forms of leeway defines specific conditions of mobilization. The authors demonstrate how the content of their claims is influenced by these conditions of mobilization.