4 resultados para Negative Binomial model

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les données comptées (count data) possèdent des distributions ayant des caractéristiques particulières comme la non-normalité, l’hétérogénéité des variances ainsi qu’un nombre important de zéros. Il est donc nécessaire d’utiliser les modèles appropriés afin d’obtenir des résultats non biaisés. Ce mémoire compare quatre modèles d’analyse pouvant être utilisés pour les données comptées : le modèle de Poisson, le modèle binomial négatif, le modèle de Poisson avec inflation du zéro et le modèle binomial négatif avec inflation du zéro. À des fins de comparaisons, la prédiction de la proportion du zéro, la confirmation ou l’infirmation des différentes hypothèses ainsi que la prédiction des moyennes furent utilisées afin de déterminer l’adéquation des différents modèles. Pour ce faire, le nombre d’arrestations des membres de gangs de rue sur le territoire de Montréal fut utilisé pour la période de 2005 à 2007. L’échantillon est composé de 470 hommes, âgés de 18 à 59 ans. Au terme des analyses, le modèle le plus adéquat est le modèle binomial négatif puisque celui-ci produit des résultats significatifs, s’adapte bien aux données observées et produit une proportion de zéro très similaire à celle observée.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les chutes chez les personnes âgées représentent un problème majeur. Il n’est donc pas étonnant que l’identification des facteurs qui en accroissent le risque ait mobilisé autant d’attention. Les aînés plus fragiles ayant besoin de soutien pour vivre dans la communauté sont néanmoins demeurés le parent pauvre de la recherche, bien que, plus récemment, les autorités québécoises en aient fait une cible d’intervention prioritaire. Les études d’observation prospectives sont particulièrement indiquées pour étudier les facteurs de risque de chutes chez les personnes âgées. Leur identification optimale est cependant compliquée par le fait que l’exposition aux facteurs de risque peut varier au cours du suivi et qu’un même individu peut subir plus d’un événement. Il y a 20 ans, des chercheurs ont tenté de sensibiliser leurs homologues à cet égard, mais leurs efforts sont demeurés vains. On continue aujourd’hui à faire peu de cas de ces considérations, se concentrant sur la proportion des personnes ayant fait une chute ou sur le temps écoulé jusqu’à la première chute. On écarte du coup une quantité importante d’information pertinente. Dans cette thèse, nous examinons les méthodes en usage et nous proposons une extension du modèle de risques de Cox. Nous illustrons cette méthode par une étude des facteurs de risque susceptibles d’être associés à des chutes parmi un groupe de 959 personnes âgées ayant eu recours aux services publics de soutien à domicile. Nous comparons les résultats obtenus avec la méthode de Wei, Lin et Weissfeld à ceux obtenus avec d’autres méthodes, dont la régression logistique conventionnelle, la régression logistique groupée, la régression binomiale négative et la régression d’Andersen et Gill. L’investigation est caractérisée par des prises de mesures répétées des facteurs de risque au domicile des participants et par des relances téléphoniques mensuelles visant à documenter la survenue des chutes. Les facteurs d’exposition étudiés, qu’ils soient fixes ou variables dans le temps, comprennent les caractéristiques sociodémographiques, l’indice de masse corporelle, le risque nutritionnel, la consommation d’alcool, les dangers de l’environnement domiciliaire, la démarche et l’équilibre, et la consommation de médicaments. La quasi-totalité (99,6 %) des usagers présentaient au moins un facteur à haut risque. L’exposition à des risques multiples était répandue, avec une moyenne de 2,7 facteurs à haut risque distincts par participant. Les facteurs statistiquement associés au risque de chutes incluent le sexe masculin, les tranches d’âge inférieures, l’histoire de chutes antérieures, un bas score à l’échelle d’équilibre de Berg, un faible indice de masse corporelle, la consommation de médicaments de type benzodiazépine, le nombre de dangers présents au domicile et le fait de vivre dans une résidence privée pour personnes âgées. Nos résultats révèlent cependant que les méthodes courantes d’analyse des facteurs de risque de chutes – et, dans certains cas, de chutes nécessitant un recours médical – créent des biais appréciables. Les biais pour les mesures d’association considérées proviennent de la manière dont l’exposition et le résultat sont mesurés et définis de même que de la manière dont les méthodes statistiques d’analyse en tiennent compte. Une dernière partie, tout aussi innovante que distincte de par la nature des outils statistiques utilisés, complète l’ouvrage. Nous y identifions des profils d’aînés à risque de devenir des chuteurs récurrents, soit ceux chez qui au moins deux chutes sont survenues dans les six mois suivant leur évaluation initiale. Une analyse par arbre de régression et de classification couplée à une analyse de survie a révélé l’existence de cinq profils distinctifs, dont le risque relatif varie de 0,7 à 5,1. Vivre dans une résidence pour aînés, avoir des antécédents de chutes multiples ou des troubles de l’équilibre et consommer de l’alcool sont les principaux facteurs associés à une probabilité accrue de chuter précocement et de devenir un chuteur récurrent. Qu’il s’agisse d’activité de dépistage des facteurs de risque de chutes ou de la population ciblée, cette thèse s’inscrit dans une perspective de gain de connaissances sur un thème hautement d’actualité en santé publique. Nous encourageons les chercheurs intéressés par l’identification des facteurs de risque de chutes chez les personnes âgées à recourir à la méthode statistique de Wei, Lin et Weissfeld car elle tient compte des expositions variables dans le temps et des événements récurrents. Davantage de recherches seront par ailleurs nécessaires pour déterminer le choix du meilleur test de dépistage pour un facteur de risque donné chez cette clientèle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La surveillance de l’influenza s’appuie sur un large spectre de données, dont les données de surveillance syndromique provenant des salles d’urgences. De plus en plus de variables sont enregistrées dans les dossiers électroniques des urgences et mises à la disposition des équipes de surveillance. L’objectif principal de ce mémoire est d’évaluer l’utilité potentielle de l’âge, de la catégorie de triage et de l’orientation au départ de l’urgence pour améliorer la surveillance de la morbidité liée aux cas sévères d’influenza. Les données d’un sous-ensemble des hôpitaux de Montréal ont été utilisées, d’avril 2006 à janvier 2011. Les hospitalisations avec diagnostic de pneumonie ou influenza ont été utilisées comme mesure de la morbidité liée aux cas sévères d’influenza, et ont été modélisées par régression binomiale négative, en tenant compte des tendances séculaires et saisonnières. En comparaison avec les visites avec syndrome d’allure grippale (SAG) totales, les visites avec SAG stratifiées par âge, par catégorie de triage et par orientation de départ ont amélioré le modèle prédictif des hospitalisations avec pneumonie ou influenza. Avant d’intégrer ces variables dans le système de surveillance de Montréal, des étapes additionnelles sont suggérées, incluant l’optimisation de la définition du syndrome d’allure grippale à utiliser, la confirmation de la valeur de ces prédicteurs avec de nouvelles données et l’évaluation de leur utilité pratique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper tests the predictions of the Barro-Gordon model using US data on inflation and unemployment. To that end, it constructs a general game-theoretical model with asymmetric preferences that nests the Barro-Gordon model and a version of Cukierman’s model as special cases. Likelihood Ratio tests indicate that the restriction imposed by the Barro-Gordon model is rejected by the data but the one imposed by the version of Cukierman’s model is not. Reduced-form estimates are consistent with the view that the Federal Reserve weights more heavily positive than negative unemployment deviations from the expected natural rate.