2 resultados para NITROGEN MONOXIDE
em Université de Montréal, Canada
Resumo:
Ce projet a pour but d’évaluer la capacité de la voie des pentoses phosphates (VPP) dans les racines transgéniques de pomme de terre (Solanum tuberosum) modifiées pour exprimer différents niveaux de l'hexokinase (HK) et de la triosephosphate isomérase cytosolique (cTPI). Dans les racines, la VPP alimente la voie de l’assimilation de l’azote en equivalents réducteurs et permet donc la biosynthèse des acides aminés. Le glucose-6-phosphate produit par l’HK est consommé par la partie oxydative de la VPP catalysée par la glucose-6-phosphate déshydrogénase (G6PDH) et la 6-phosphogluconate déshydrogénase (6PGDH). Les changements dans l'expression de HK et cTPI peuvent affecter le fonctionnement de la VPP et les mécanismes qui sont liés à l’utilisation des équivalents réducteurs produits par la VPP, comme l'assimilation de l’azote et la synthèse des acides aminés. Afin d’évaluer l’effet des manipulations génétiques de l’HK et de la cTPI sur l’assimilation de l’azote, nous avons cultivé les racines transgéniques sur des milieux contenant des concentrations élevées (7 mM) ou basses (0,7 mM) de nitrate d’ammonium comme source d’azote. Les résultats montrent que la culture sur un milieu riche en azote induit les activités G6PDH et 6PGDH. Les données montrent que la capacité de la VPP est plus grande avec des niveaux élevés en HK ou en cTPI. Nous avons aussi pu démontrer une plus grande activité spécifique de l’HK dans les conditions pauvres en azote. Ces données ont été complémentées par des mesures des pools d’acides aminés dans les racines transgéniques cultivées sur différents niveaux d’azote. Aucune tendance notable des pools d’acides aminés n’a été remarquée dans les racines modifiées pour leur contenu en HK suggèrant que la manipulation de HK n’affecte pas l'assimilation de l’azote. Dans les racines transgéniques modifiées pour la cTPI, les ratios Gln/Glu et Asn/Asp sont plus élevés chez les clones antisens, indiquant une assimilation de l’azote plus élevée. Ces résultats ont démontré l'activation de l'assimilation de l’azote chez les clones antisens cTPI dans les conditions élevées et basses d’azote alors que la manipulation de l’HK n’affecte pas l’assimilation de l’azote.
Resumo:
Rampant increases in oil prices and detrimental effects of fossil fuels on the environment have been the main impetus for the development of environmentally friendly and sustainable energy sources. Amongst the many possibilities, microalgae have been proposed as a new alternative energy source to fossil fuels, as their growth is both sustainable and ecologically safe. By definition, microalgae are unicellular photosynthetic microorganisms containing chlorophyll a. These organisms are capable of producing large quantities of oils, surpassing that of traditional oil-seed crops, which can be transformed, through chemical processes, into biofuels such as biodiesel or bio-gasoline. Thus, recent research has gone into discovering high lipid producing algal strains, optimising growth media for increased lipid production and developing metabolic engineering to make microalgae a source of biofuel that is competitive to more traditional sources of biofuel and even to fossil fuel. In this context, the research reported here focused on using a mixotrophic growth mode as a way to increase lipid production for certain strains of microalgae. In addition, nitrogen starvation combined with mixotrophy was studied to analyse its effects on lipid production. Mixotrophy is the parallel usage of two trophic modes, in our case photoautotrophy and heterotrophy. Consequently, 12 algal strains were screened for mixotrophic growth, using glycerol as a carbon source. Glycerol is a waste product of the current biodiesel industry; it is a cheap and abundant carbon source present in many metabolic pathways. From this initial screening, several strains were chosen for subsequent experiments involving nitrogen starvation. Nitrogen starvation has been shown to induce lipid accumulation. The results obtained show that a mixotrophic growth mode, using glycerol as a carbon source, enhances lipid production for certain strains. Moreover, lipid enhancement was shown for nitrogen starvation combined with mixotrophic growth mode. This was dependant on time spent under nitrogen starvation and on initial concentrations of the nitrogen source.