4 resultados para N-glucuronidation
em Université de Montréal, Canada
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le [6]-gingérol est un analogue structurel de la capsaïcine, une molécule agoniste au récepteurs TRPV1 et ayant des propriétés thérapeutiques connues dans le traitement de la douleur. Deux objectifs principaux ont été poursuivis lors de la réalisation de ce projet de recherche. D’abord, établir une meilleure caractérisation du métabolisme du [6]-gingérol chez le rat. Pour ce faire, une méthode sensible et spécifique pour la quantification du [6]-gingérol et ses métabolites par HPLC-ESI/MS/MS a été développée. Une étude de stabilité métabolique in vitro utilisant des microsomes hépatiques de rats a ensuite été réalisée. Les résultats démontrent une dégradation lente avec un temps de demi-vie de 163 minutes et une clairance intrinsèque relativement basse de 0.0043 mL/min. D’autres analyses ont ensuite été performées pour caractériser les métabolites in vitro et in vivo. Trois principaux métabolites de phase I et quatre métabolites de phase II ont été identifiés par HPLC-MS/MS et HPLC-MSD TOF. Les résultats suggèrent que le principal métabolite excrété dans l’urine est un glucuronide du [6]-gingérol hydroxylé. Le second objectif de ce projet était de déterminer l’effet central du [6]-gingérol sur la douleur neuropathique lorsqu’injecté par voie intrathécale. La distribution de la molécule a d’abord été évaluée suite à une administration intra-péritonéale de 40 mg/kg de [6]-gingérol et les ratios des concentrations cerveau-plasma et moelle épinière-plasma (0.73 et 1.7, respectivement) suggèrent que le [6]-gingérol se distribue efficacement au niveau du système nerveux central. Une injection intrathécale de 10 μg de [6]-gingérol à été performée chez les rats suite à l’induction de douleur par la pose de ligatures au niveau du nerf sciatique. Les résultats suggèrent une réduction significative de l’allodynie mécanique et de l’hyperalgésie thermique à 30 min, 2 h et 4 h suivant l’injection (p < 0.05, p < 0.01 et p < 0.001). Le [6]-gingérol se distribue donc adéquatement au niveau du système nerveux central des rats, permettant une action au niveau des récepteurs TRPV1. Ainsi, le [6]-gingérol pourrait soulager la douleur neuropathique en agissant centralement au niveau de la moelle épinière.
Resumo:
L'exposition aux mélanges de contaminants (environnementaux, alimentaires ou thérapeutiques) soulève de nombreuses interrogations et inquiétudes vis-à-vis des probabilités d'interactions toxicocinétiques et toxicodynamiques. Une telle coexposition peut influencer le mode d’action des composants du cocktail et donc de leur toxicité, suite à un accroissement de leurs concentrations internes. Le bisphénol A (4 dihydroxy-2,2-diphenylpropane) est un contaminant chimique répandu de manière ubiquitaire dans notre environnement, largement utilisé dans la fabrication des plastiques avec l’un des plus grands volumes de production à l’échelle mondiale. Il est un perturbateur endocrinien par excellence de type œstrogèno-mimétique. Cette molécule est biotransformée en métabolites non toxiques par un processus de glucuronidation. L'exposition concomitante à plusieurs xénobiotiques peut induire à la baisse le taux de glucuronidation du polluant chimique d'intérêt, entre autres la co-exposition avec des médicaments. Puisque la consommation de produits thérapeutiques est un phénomène grandissant dans la population, la possibilité d’une exposition simultanée est d’autant plus grande et forte. Sachant que l'inhibition métabolique est le mécanisme d'interaction le plus plausible pouvant aboutir à une hausse des niveaux internes ainsi qu’à une modulation de la toxicité prévue, la présente étude visait d'abord à confirmer et caractériser ce type d'interactions métaboliques entre le bisphénol A et le naproxène, qui est un anti-inflammatoire non stéroïdiennes (AINS), sur l'ensemble d'un organe intact en utilisant le système de foie de rat isolé et perfusé (IPRL). Elle visait ensuite à déterminer la cinétique enzymatique de chacune de ces deux substances, seule puis en mélange binaire. Dans un second temps, nous avons évalué aussi l’influence de la présence d'albumine sur la cinétique métabolique et le comportement de ces deux substances étudiées en suivant le même modèle de perfusion in vivo au niveau du foie de rat. Les constantes métaboliques ont été déterminées par régression non linéaire. Les métabolismes du BPA et du NAP seuls ont montré une cinétique saturable avec une vélocité maximale (Vmax) de 8.9 nmol/min/ mg prot de foie et une constante d'affinité de l'enzyme pour le substrat (Km) de 51.6 μM pour le BPA et de 3 nmol/min/mg prot de foie et 149.2 μM pour le NAP. L'analyse des expositions combinées suggère une inhibition compétitive partielle du métabolisme du BPA par le NAP avec une valeur de Ki estimée à 0.3542 μM. Les résultats obtenus montrent que l’analyse de risque pour les polluants environnementaux doit donc prendre en considération la consommation des produits pharmaceutiques comme facteur pouvant accroitre le niveau interne lors d’une exposition donnée. Ces données in vivo sur les interactions métaboliques pourraient être intégrées dans un modèle pharmacocinétique à base physiologique (PBPK) pour prédire les conséquences toxicococinétique (TK) de l'exposition d'un individu à ces mélanges chimiques.
Resumo:
La muqueuse intestinale est exposée à des agents oxydants provenant de l’ingestion d’aliments modifiés, de cellules immuno-inflammatoires et de la flore intestinale. Une diète élevée en fruits et légumes peut diminuer le stress oxydant (SOx) ainsi que l’inflammation via plusieurs mécanismes. Ces effets bénéfiques peuvent être attribuables à leur contenu élevé en polyphénols. La première étude de mon doctorat consistait à tester l’hypothèse que les polyphénols extraits de pelures de pomme (DAPP) pouvaient diminuer le stress oxydant et l'inflammation impliqués dans les maladies inflammatoires de l'intestin (MII). Nous avons caractérisé les polyphénols des DAPP par spectrométrie de masse (LC-MS) et examiné leur potentiel antioxydant et anti-inflammatoire au niveau des cellules intestinales. L’identification des structures chimiques des polyphénols a été effectuée par LC-MS. Le SOx a été induit par l’ajout du complexe fer/ascorbate (Fe/Asc, 200 µM/2 mM) et l’inflammation par la lipopolysaccharide (LPS, 200µg/mL) à des cellules intestinales Caco-2/15 pré-incubées avec les DAPP (250 µg/mL). L’effet du SOx est déterminé par le dosage du malondialdéhyde (MDA), de la composition des acides gras polyinsaturés et de l’activité des enzymes antioxydantes endogènes (SOD et GPx). L’impact des DAPP sur l’inflammation a été testé par l’analyse de l’expression des marqueurs inflammatoires: cyclooxygénase-2 (COX-2), le facteur de nécrose tumorale alpha (TNF-a et l’interleukine-6 (IL-6) et les facteurs de transcription NF-KB, Nrf-2 et PGC1α par immunobuvardage. Nos données ont montré que les flavonols et les flavan-3-ols constituent les composés polyphénoliques majoritaires des DAPP. L’ajout de Fer2+/Asc a provoqué une augmentation de la peroxidation lipidique comparativement aux cellules contrôles, un appauvrissement des acides gras polyinsaturés n-3 et n-6, et une modulation des enzymes antioxydantes, se traduisant par une augmentation de l’activité de la SOD et une diminution de la GPx. En contrepartie, les DAPP ont exhibé leur potentiel à corriger la plupart des perturbations, y compris l’expression protéique anormalement élevée du COX-2 et la production de la prostaglandine E2 (PGE2), ainsi que l’inflammation telle que réflétée par les facteurs NF-κB, TNF-α et IL-6. Par ailleurs, les mécanismes sous-jacents à ces changements bénéfiques des DAPP ont fait intervenir les facteurs de transcription antioxydants (Nrf-2, PGC1α). Vraisemblablement, cette première étude a permis de démontrer la capacité des DAPP à amoindrir le SOx et à réduire l’inflammation, deux processus étroitement impliqués dans les MII. Dans la deuxième étape de mon doctorat, nous avons voulu comparer les résultats de DAPP à ceux des polyphénols dérivant de la canneberge qui est considérée par la communauté scientifique comme le fruit ayant le plus fort potentiel antioxydant. À cette fin, nous avons caractérisé l’effet des composés polyphénoliques de la canneberge (CPC) sur le SOx, la défense antioxydante et l’inflammation au niveau intestinal tout en définissant leur métabolisme intraluminal. Les différents CPC ont été séparés selon leur poids moléculaire par chromatographie et leurs structures chimiques ont été identifiées par LC-MS. Suite à une pré-incubation des cellules Caco-2/15 avec les extraits CPC (250 µg/mL), le Fe/Asc et la LPS ont été administrés comme inducteurs du SOx et de l’inflammation, respectivement. La caractérisation globale des CPC a révélé que les acides phénoliques composaient majoritairement l’extrait de canneberge de petit poids moléculaire (LC) alors que les flavonoïdes et les procyanidines dimériques/trimériques représentaient l’extrait de poids moléculaire moyen (MC) tout en laissant les procyanidines oligo et polymériques à l’extrait de haut poids moléculaire (HC). Les CPC ont permis de restaurer la plupart des perturbations engendrées dans les Caco-2/15 par le Fe/Asc et le LPS. Les CPC exhibaient le potentiel d’abaisser les niveaux de MDA, de corriger la composition des acides gras polyinsaturés n-3 et n-6, d’augmenter l’activité des enzymes antioxydantes (SOD, GPx et CAT) et d’élever l’expression de Nrf2 et PGC1α. En outre, les CPC pouvaient aussi réduire les niveaux élevés des protéines inflammatoires COX-2, TNF-α et IL-6 ainsi que la production des PGE2 par un mécanisme impliquant le NF-κB. Au niveau mitochondrial, les procyanidines oligomériques ont réussi à corriger les dysfonctions reliées à la production d’énergie (ATP), l’apoptose (Bcl-2, Cyt C et AIF) et le statut des facteurs de transcription mitochondriaux (mtTFA, mtTFB1, mtTFB2). Dans le but de bien comprendre les mécanismes d’action des CPC, nous avons défini par LC-MS les composés polyphénoliques qui ont été transportés ou absorbés par l’entérocyte. Nos analyses soulignent le transport (i) des acides cinnamiques et benzoïques (LC); (ii) la quercétine glycosylée et conjuguée et les procyanidines dimériques de type A (MC); et (iii) l’épicatéchine et les procyanidines oligomériques (HC). Les processus de métabolisation (méthylation, glucuronidation et sulfatation) au niveau de l’entérocyte ont probablement permis le transport de ces CPC surtout sous leur forme conjuguée. Les procyanidines oligomériques ayant un degré de polymérisation supérieur à 2 (HC) ont semblé adhérer aux cellules Caco-2/15. L’épicatéchine suivi par les procyanidines dimériques de type A ont été trouvés majoritaires au niveau des mitochondries. Même si nous ignorons encore l’action biologique de chaque composé polyphénolique, nous pouvons suggérer que leurs effets combinatoires exercent des fonctions antioxydantes, anti-inflammatoires et mitochondriales dans le modèle intestinal Caco-2/15. Dans une troisième étape, nous avons procédé à l’évaluation des aspects préventifs et thérapeutique des DAPP tout en sondant les mécanismes sous-jacents dans une étude préclinique. À cette fin, nous avons exploité le modèle de souris avec colite expérimentale provoquée par le Dextran Sulfate de Sodium (DSS). L’induction de l’inflammation intestinale chez la souris C57BL6 a été effectuée par l’administration orale de DSS à 2.5% pendant 10 jours. Des doses physiologiques et supra-physiologiques de DAPP (200 et 400 mg/kg/j, respectivement) ont été administrées par gavage pendant 10 jours pré- et post-DSS. L’inflammation par le DSS a provoqué une perte de poids, un raccourcissement du côlon, le décollement dystrophique de l’épithélium, l’exulcération et les infiltrations de cellules mono et polynucléaires au niveau du côlon. De plus, le DSS a induit une augmentation de la peroxidation lipidique, une régulation à la baisse des enzymes antioxydantes, une expression protéique à la hausse de la myéloperoxidase (MPO), du COX-2 et de la production des PGE2. Par ailleurs, les DAPP ont permis de corriger ou du moins d’alléger la plupart de ces anomalies en situation préventive ou thérapeutique, en plus d’abaisser l’expression protéique de NF-κB et des cytokines inflammatoires (TNF-a et l’IL-6) tout en stimulant les facteurs de transcription antioxydants (Nrf-2, PGC1α). Conséquemment, les polyphénols des DAPP ont exhibé leur puissant pouvoir antioxydant et anti-inflammatoire au niveau intestinal dans un modèle in vivo. Leurs actions sont associées à la régulation des voies de signalisation cellulaire et des changements dans la composition du microbiote. Ces trois projets de recherche permettent d’envisager l’évaluation des effets préventifs et thérapeutiques des DAPP cliniquement chez les patients avec des désordres inflammatoires de l’intestin.