2 resultados para Multi-couches

em Université de Montréal, Canada


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les modèles de réflexion complexes, avec leurs nombreux paramètres dont certains restent non intuitifs, sont difficiles à contrôler pour obtenir une apparence désirée. De plus, même si un artiste peut plus aisément comprendre la forme de la micro-géométrie d'une surface, sa modélisation en 3D et sa simulation en 4D demeurent extrêmement fastidieuses et coûteuses en mémoire. Nous proposons une solution intermédiaire, où l'artiste représente en 2D une coupe dans un matériau, en dessinant une micro-géométrie de surface en multi-couches. Une simulation efficace par lancer de rayons en seulement 2D capture les distributions de lumière affectées par les micro-géométries. La déviation hors-plan est calculée automatiquement de façon probabiliste en fonction de la normale au point d'intersection et de la direction du rayon incident. Il en résulte des BRDFs isotropes complètes et complexes, simulées à des vitesses interactives, et permettant ainsi une édition interactive de l'apparence de réflectances riches et variées.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'ère numérique dans laquelle nous sommes entrés apporte une quantité importante de nouveaux défis à relever dans une multitude de domaines. Le traitement automatique de l'abondante information à notre disposition est l'un de ces défis, et nous allons ici nous pencher sur des méthodes et techniques adaptées au filtrage et à la recommandation à l'utilisateur d'articles adaptés à ses goûts, dans le contexte particulier et sans précédent notable du jeu vidéo multi-joueurs en ligne. Notre objectif est de prédire l'appréciation des niveaux par les joueurs. Au moyen d'algorithmes d'apprentissage machine modernes tels que les réseaux de neurones profonds avec pré-entrainement non-supervisé, que nous décrivons après une introduction aux concepts nécessaires à leur bonne compréhension, nous proposons deux architectures aux caractéristiques différentes bien que basées sur ce même concept d'apprentissage profond. La première est un réseau de neurones multi-couches pour lequel nous tentons d'expliquer les performances variables que nous rapportons sur les expériences menées pour diverses variations de profondeur, d'heuristique d'entraînement, et des méthodes de pré-entraînement non-supervisé simple, débruitant et contractant. Pour la seconde architecture, nous nous inspirons des modèles à énergie et proposons de même une explication des résultats obtenus, variables eux aussi. Enfin, nous décrivons une première tentative fructueuse d'amélioration de cette seconde architecture au moyen d'un fine-tuning supervisé succédant le pré-entrainement, puis une seconde tentative où ce fine-tuning est fait au moyen d'un critère d'entraînement semi-supervisé multi-tâches. Nos expériences montrent des performances prometteuses, notament avec l'architecture inspirée des modèles à énergie, justifiant du moins l'utilisation d'algorithmes d'apprentissage profonds pour résoudre le problème de la recommandation.