37 resultados para Monte - Carlo study
em Université de Montréal, Canada
Resumo:
Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicœur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.
Resumo:
En radiothérapie, la tomodensitométrie (CT) fournit l’information anatomique du patient utile au calcul de dose durant la planification de traitement. Afin de considérer la composition hétérogène des tissus, des techniques de calcul telles que la méthode Monte Carlo sont nécessaires pour calculer la dose de manière exacte. L’importation des images CT dans un tel calcul exige que chaque voxel exprimé en unité Hounsfield (HU) soit converti en une valeur physique telle que la densité électronique (ED). Cette conversion est habituellement effectuée à l’aide d’une courbe d’étalonnage HU-ED. Une anomalie ou artefact qui apparaît dans une image CT avant l’étalonnage est susceptible d’assigner un mauvais tissu à un voxel. Ces erreurs peuvent causer une perte cruciale de fiabilité du calcul de dose. Ce travail vise à attribuer une valeur exacte aux voxels d’images CT afin d’assurer la fiabilité des calculs de dose durant la planification de traitement en radiothérapie. Pour y parvenir, une étude est réalisée sur les artefacts qui sont reproduits par simulation Monte Carlo. Pour réduire le temps de calcul, les simulations sont parallélisées et transposées sur un superordinateur. Une étude de sensibilité des nombres HU en présence d’artefacts est ensuite réalisée par une analyse statistique des histogrammes. À l’origine de nombreux artefacts, le durcissement de faisceau est étudié davantage. Une revue sur l’état de l’art en matière de correction du durcissement de faisceau est présentée suivi d’une démonstration explicite d’une correction empirique.
Resumo:
Cette thèse, composée de quatre articles scientifiques, porte sur les méthodes numériques atomistiques et leur application à des systèmes semi-conducteurs nanostructurés. Nous introduisons les méthodes accélérées conçues pour traiter les événements activés, faisant un survol des développements du domaine. Suit notre premier article, qui traite en détail de la technique d'activation-relaxation cinétique (ART-cinétique), un algorithme Monte Carlo cinétique hors-réseau autodidacte basé sur la technique de l'activation-relaxation nouveau (ARTn), dont le développement ouvre la voie au traitement exact des interactions élastiques tout en permettant la simulation de matériaux sur des plages de temps pouvant atteindre la seconde. Ce développement algorithmique, combiné à des données expérimentales récentes, ouvre la voie au second article. On y explique le relâchement de chaleur par le silicium cristallin suite à son implantation ionique avec des ions de Si à 3 keV. Grâce à nos simulations par ART-cinétique et l'analyse de données obtenues par nanocalorimétrie, nous montrons que la relaxation est décrite par un nouveau modèle en deux temps: "réinitialiser et relaxer" ("Replenish-and-Relax"). Ce modèle, assez général, peut potentiellement expliquer la relaxation dans d'autres matériaux désordonnés. Par la suite, nous poussons l'analyse plus loin. Le troisième article offre une analyse poussée des mécanismes atomistiques responsables de la relaxation lors du recuit. Nous montrons que les interactions élastiques entre des défauts ponctuels et des petits complexes de défauts contrôlent la relaxation, en net contraste avec la littérature qui postule que des "poches amorphes" jouent ce rôle. Nous étudions aussi certains sous-aspects de la croissance de boîtes quantiques de Ge sur Si (001). En effet, après une courte mise en contexte et une introduction méthodologique supplémentaire, le quatrième article décrit la structure de la couche de mouillage lors du dépôt de Ge sur Si (001) à l'aide d'une implémentation QM/MM du code BigDFT-ART. Nous caractérisons la structure de la reconstruction 2xN de la surface et abaissons le seuil de la température nécessaire pour la diffusion du Ge en sous-couche prédit théoriquement par plus de 100 K.
Resumo:
Le travail de modélisation a été réalisé à travers EGSnrc, un logiciel développé par le Conseil National de Recherche Canada.
Resumo:
Rapport de recherche
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopted is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, three applications to GARCH and realized volatility models are presented.
Resumo:
Dans la pratique actuelle de la curiethérapie à bas débit, l'évaluation de la dose dans la prostate est régie par le protocole défini dans le groupe de travail 43 (TG-43) de l'American Association of Physicists in Medicine. Ce groupe de travail suppose un patient homogène à base d'eau de même densité et néglige les changements dans l'atténuation des photons par les sources de curiethérapie. En considérant ces simplifications, les calculs de dose se font facilement à l'aide d'une équation, indiquée dans le protocole. Bien que ce groupe de travail ait contribué à l'uniformisation des traitements en curiethérapie entre les hôpitaux, il ne décrit pas adéquatement la distribution réelle de la dose dans le patient. La publication actuelle du TG-186 donne des recommandations pour étudier des distributions de dose plus réalistes. Le but de ce mémoire est d'appliquer ces recommandations à partir du TG-186 pour obtenir une description plus réaliste de la dose dans la prostate. Pour ce faire, deux ensembles d'images du patient sont acquis simultanément avec un tomodensitomètre à double énergie (DECT). Les artéfacts métalliques présents dans ces images, causés par les sources d’iode, sont corrigés à l'aide d’un algorithme de réduction d'artefacts métalliques pour DECT qui a été développé dans ce travail. Ensuite, une étude Monte Carlo peut être effectuée correctement lorsque l'image est segmentée selon les différents tissus humains. Cette segmentation est effectuée en évaluant le numéro atomique effectif et la densité électronique de chaque voxel, par étalonnage stoechiométrique propre au DECT, et en y associant le tissu ayant des paramètres physiques similaires. Les résultats montrent des différences dans la distribution de la dose lorsqu'on compare la dose du protocole TG-43 avec celle retrouvée avec les recommandations du TG-186.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.