294 resultados para Modèle probabiliste

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chaque jour, des décisions doivent être prises quant à la quantité d'hydroélectricité produite au Québec. Ces décisions reposent sur la prévision des apports en eau dans les bassins versants produite à l'aide de modèles hydrologiques. Ces modèles prennent en compte plusieurs facteurs, dont notamment la présence ou l'absence de neige au sol. Cette information est primordiale durant la fonte printanière pour anticiper les apports à venir, puisqu'entre 30 et 40% du volume de crue peut provenir de la fonte du couvert nival. Il est donc nécessaire pour les prévisionnistes de pouvoir suivre l'évolution du couvert de neige de façon quotidienne afin d'ajuster leurs prévisions selon le phénomène de fonte. Des méthodes pour cartographier la neige au sol sont actuellement utilisées à l'Institut de recherche d'Hydro-Québec (IREQ), mais elles présentent quelques lacunes. Ce mémoire a pour objectif d'utiliser des données de télédétection en micro-ondes passives (le gradient de températures de brillance en position verticale (GTV)) à l'aide d'une approche statistique afin de produire des cartes neige/non-neige et d'en quantifier l'incertitude de classification. Pour ce faire, le GTV a été utilisé afin de calculer une probabilité de neige quotidienne via les mélanges de lois normales selon la statistique bayésienne. Par la suite, ces probabilités ont été modélisées à l'aide de la régression linéaire sur les logits et des cartographies du couvert nival ont été produites. Les résultats des modèles ont été validés qualitativement et quantitativement, puis leur intégration à Hydro-Québec a été discutée.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nous proposons une approche probabiliste afin de déterminer l’impact des changements dans les programmes à objets. Cette approche sert à prédire, pour un changement donné dans une classe du système, l’ensemble des autres classes potentiellement affectées par ce changement. Cette prédiction est donnée sous la forme d’une probabilité qui dépend d’une part, des interactions entre les classes exprimées en termes de nombre d’invocations et d’autre part, des relations extraites à partir du code source. Ces relations sont extraites automatiquement par rétro-ingénierie. Pour la mise en oeuvre de notre approche, nous proposons une approche basée sur les réseaux bayésiens. Après une phase d’apprentissage, ces réseaux prédisent l’ensemble des classes affectées par un changement. L’approche probabiliste proposée est évaluée avec deux scénarios distincts mettant en oeuvre plusieurs types de changements effectués sur différents systèmes. Pour les systèmes qui possèdent des données historiques, l’apprentissage a été réalisé à partir des anciennes versions. Pour les systèmes dont on ne possède pas assez de données relatives aux changements de ses versions antécédentes, l’apprentissage a été réalisé à l’aide des données extraites d’autres systèmes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Une réconciliation entre un arbre de gènes et un arbre d’espèces décrit une histoire d’évolution des gènes homologues en termes de duplications et pertes de gènes. Pour inférer une réconciliation pour un arbre de gènes et un arbre d’espèces, la parcimonie est généralement utilisée selon le nombre de duplications et/ou de pertes. Les modèles de réconciliation sont basés sur des critères probabilistes ou combinatoires. Le premier article définit un modèle combinatoire simple et général où les duplications et les pertes sont clairement identifiées et la réconciliation parcimonieuse n’est pas la seule considérée. Une architecture de toutes les réconciliations est définie et des algorithmes efficaces (soit de dénombrement, de génération aléatoire et d’exploration) sont développés pour étudier les propriétés combinatoires de l’espace de toutes les réconciliations ou seulement les plus parcimonieuses. Basée sur le processus classique nommé naissance-et-mort, un algorithme qui calcule la vraisemblance d’une réconciliation a récemment été proposé. Le deuxième article utilise cet algorithme avec les outils combinatoires décrits ci-haut pour calculer efficacement (soit approximativement ou exactement) les probabilités postérieures des réconciliations localisées dans le sous-espace considéré. Basé sur des taux réalistes (selon un modèle probabiliste) de duplication et de perte et sur des données réelles/simulées de familles de champignons, nos résultats suggèrent que la masse probabiliste de toute l’espace des réconciliations est principalement localisée autour des réconciliations parcimonieuses. Dans un contexte d’approximation de la probabilité d’une réconciliation, notre approche est une alternative intéressante face aux méthodes MCMC et peut être meilleure qu’une approche sophistiquée, efficace et exacte pour calculer la probabilité d’une réconciliation donnée. Le problème nommé Gene Tree Parsimony (GTP) est d’inférer un arbre d’espèces qui minimise le nombre de duplications et/ou de pertes pour un ensemble d’arbres de gènes. Basé sur une approche qui explore tout l’espace des arbres d’espèces pour les génomes considérés et un calcul efficace des coûts de réconciliation, le troisième article décrit un algorithme de Branch-and-Bound pour résoudre de façon exacte le problème GTP. Lorsque le nombre de taxa est trop grand, notre algorithme peut facilement considérer des relations prédéfinies entre ensembles de taxa. Nous avons testé notre algorithme sur des familles de gènes de 29 eucaryotes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tâche de maintenance ainsi que la compréhension des programmes orientés objet (OO) deviennent de plus en plus coûteuses. L’analyse des liens de dépendance peut être une solution pour faciliter ces tâches d’ingénierie. Cependant, analyser les liens de dépendance est une tâche à la fois importante et difficile. Nous proposons une approche pour l'étude des liens de dépendance internes pour des programmes OO, dans un cadre probabiliste, où les entrées du programme peuvent être modélisées comme un vecteur aléatoire, ou comme une chaîne de Markov. Dans ce cadre, les métriques de couplage deviennent des variables aléatoires dont les distributions de probabilité peuvent être étudiées en utilisant les techniques de simulation Monte-Carlo. Les distributions obtenues constituent un point d’entrée pour comprendre les liens de dépendance internes entre les éléments du programme, ainsi que leur comportement général. Ce travail est valable dans le cas où les valeurs prises par la métrique dépendent des entrées du programme et que ces entrées ne sont pas fixées à priori. Nous illustrons notre approche par deux études de cas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans une turbine hydraulique, la rotation des aubes dans l’eau crée une zone de basse pression, amenant l’eau à passer de l’état liquide à l’état gazeux. Ce phénomène de changement de phase est appelé cavitation et est similaire à l’ébullition. Lorsque les cavités de vapeur formées implosent près des parois, il en résulte une érosion sévère des matériaux, accélérant de façon importante la dégradation de la turbine. Un système de détection de l’érosion de cavitation à l’aide de mesures vibratoires, employable sur les turbines en opération, a donc été installé sur quatre groupes turbine-alternateur d’une centrale et permet d’estimer précisément le taux d’érosion en kg/ 10 000 h. Le présent projet vise à répondre à deux objectifs principaux. Premièrement, étudier le comportement de la cavitation sur un groupe turbine-alternateur cible et construire un modèle statistique, dans le but de prédire la variable cavitation en fonction des variables opératoires (tels l’ouverture de vannage, le débit, les niveaux amont et aval, etc.). Deuxièmement, élaborer une méthodologie permettant la reproductibilité de l’étude à d’autres sites. Une étude rétrospective sera effectuée et on se concentrera sur les données disponibles depuis la mise à jour du système en 2010. Des résultats préliminaires ont mis en évidence l’hétérogénéité du comportement de cavitation ainsi que des changements entre la relation entre la cavitation et diverses variables opératoires. Nous nous proposons de développer un modèle probabiliste adapté, en utilisant notamment le regroupement hiérarchique et des modèles de régression linéaire multiple.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L’infonuage est un nouveau paradigme de services informatiques disponibles à la demande qui a connu une croissance fulgurante au cours de ces dix dernières années. Le fournisseur du modèle de déploiement public des services infonuagiques décrit le service à fournir, le prix, les pénalités en cas de violation des spécifications à travers un document. Ce document s’appelle le contrat de niveau de service (SLA). La signature de ce contrat par le client et le fournisseur scelle la garantie de la qualité de service à recevoir. Ceci impose au fournisseur de gérer efficacement ses ressources afin de respecter ses engagements. Malheureusement, la violation des spécifications du SLA se révèle courante, généralement en raison de l’incertitude sur le comportement du client qui peut produire un nombre variable de requêtes vu que les ressources lui semblent illimitées. Ce comportement peut, dans un premier temps, avoir un impact direct sur la disponibilité du service. Dans un second temps, des violations à répétition risquent d'influer sur le niveau de confiance du fournisseur et sur sa réputation à respecter ses engagements. Pour faire face à ces problèmes, nous avons proposé un cadre d’applications piloté par réseau bayésien qui permet, premièrement, de classifier les fournisseurs dans un répertoire en fonction de leur niveau de confiance. Celui-ci peut être géré par une entité tierce. Un client va choisir un fournisseur dans ce répertoire avant de commencer à négocier le SLA. Deuxièmement, nous avons développé une ontologie probabiliste basée sur un réseau bayésien à entités multiples pouvant tenir compte de l’incertitude et anticiper les violations par inférence. Cette ontologie permet de faire des prédictions afin de prévenir des violations en se basant sur les données historiques comme base de connaissances. Les résultats obtenus montrent l’efficacité de l’ontologie probabiliste pour la prédiction de violation dans l’ensemble des paramètres SLA appliqués dans un environnement infonuagique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Publié sur le site Web des bibliothèques des sciences de la santé en 2004.