1 resultado para Mobility prediction

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’émergence de nouvelles applications et de nouveaux services (tels que les applications multimédias, la voix-sur-IP, la télévision-sur-IP, la vidéo-sur-demande, etc.) et le besoin croissant de mobilité des utilisateurs entrainent une demande de bande passante de plus en plus croissante et une difficulté dans sa gestion dans les réseaux cellulaires sans fil (WCNs), causant une dégradation de la qualité de service. Ainsi, dans cette thèse, nous nous intéressons à la gestion des ressources, plus précisément à la bande passante, dans les WCNs. Dans une première partie de la thèse, nous nous concentrons sur la prédiction de la mobilité des utilisateurs des WCNs. Dans ce contexte, nous proposons un modèle de prédiction de la mobilité, relativement précis qui permet de prédire la destination finale ou intermédiaire et, par la suite, les chemins des utilisateurs mobiles vers leur destination prédite. Ce modèle se base sur : (a) les habitudes de l’utilisateur en terme de déplacements (filtrées selon le type de jour et le moment de la journée) ; (b) le déplacement courant de l’utilisateur ; (c) la connaissance de l’utilisateur ; (d) la direction vers une destination estimée ; et (e) la structure spatiale de la zone de déplacement. Les résultats de simulation montrent que ce modèle donne une précision largement meilleure aux approches existantes. Dans la deuxième partie de cette thèse, nous nous intéressons au contrôle d’admission et à la gestion de la bande passante dans les WCNs. En effet, nous proposons une approche de gestion de la bande passante comprenant : (1) une approche d’estimation du temps de transfert intercellulaire prenant en compte la densité de la zone de déplacement en terme d’utilisateurs, les caractéristiques de mobilité des utilisateurs et les feux tricolores ; (2) une approche d’estimation de la bande passante disponible à l’avance dans les cellules prenant en compte les exigences en bande passante et la durée de vie des sessions en cours ; et (3) une approche de réservation passive de bande passante dans les cellules qui seront visitées pour les sessions en cours et de contrôle d’admission des demandes de nouvelles sessions prenant en compte la mobilité des utilisateurs et le comportement des cellules. Les résultats de simulation indiquent que cette approche réduit largement les ruptures abruptes de sessions en cours, offre un taux de refus de nouvelles demandes de connexion acceptable et un taux élevé d’utilisation de la bande passante. Dans la troisième partie de la thèse, nous nous penchons sur la principale limite de la première et deuxième parties de la thèse, à savoir l’évolutivité (selon le nombre d’utilisateurs) et proposons une plateforme qui intègre des modèles de prédiction de mobilité avec des modèles de prédiction de la bande passante disponible. En effet, dans les deux parties précédentes de la thèse, les prédictions de la mobilité sont effectuées pour chaque utilisateur. Ainsi, pour rendre notre proposition de plateforme évolutive, nous proposons des modèles de prédiction de mobilité par groupe d’utilisateurs en nous basant sur : (a) les profils des utilisateurs (c’est-à-dire leur préférence en termes de caractéristiques de route) ; (b) l’état du trafic routier et le comportement des utilisateurs ; et (c) la structure spatiale de la zone de déplacement. Les résultats de simulation montrent que la plateforme proposée améliore la performance du réseau comparée aux plateformes existantes qui proposent des modèles de prédiction de la mobilité par groupe d’utilisateurs pour la réservation de bande passante.