2 resultados para Micro Source
em Université de Montréal, Canada
Resumo:
Sweatshop labour is sometimes defended from critics by arguments that stress the voluntariness of the worker’s choice, and the fact that sweatshops provide a source of income where no other similar source exists. The idea is if it is exploitation—as their opponents charge—it is mutually beneficial and consensual exploitation. This defence appeals to the non-worseness claim (NWC), which says that if exploitation is better for the exploited party than neglect, it cannot be seriously wrong. The NWC renders otherwise exploitative—and therefore morally wrong—transactions permissible, making the exploitation of the global poor a justifiable path to development. In this paper, I argue that the use of NWC for the case of sweatshops is misleading. After reviewing and strengthening the exploitation claims made concerning sweatshops, most importantly by refuting certain allegations that a micro-unfairness account of exploitation cannot evaluate sweatshop labour as exploitative, I then argue that even if this practice may seem permissible due to benefits otherwise unavailable to the global poor, there remains a duty to address the background conditions that make this form of wrong-doing possible, which the NWC cannot accommodate. I argue that the NWC denies this by unreasonably limiting its scope and is therefore incomplete, and ultimately unconvincing.
Resumo:
Rampant increases in oil prices and detrimental effects of fossil fuels on the environment have been the main impetus for the development of environmentally friendly and sustainable energy sources. Amongst the many possibilities, microalgae have been proposed as a new alternative energy source to fossil fuels, as their growth is both sustainable and ecologically safe. By definition, microalgae are unicellular photosynthetic microorganisms containing chlorophyll a. These organisms are capable of producing large quantities of oils, surpassing that of traditional oil-seed crops, which can be transformed, through chemical processes, into biofuels such as biodiesel or bio-gasoline. Thus, recent research has gone into discovering high lipid producing algal strains, optimising growth media for increased lipid production and developing metabolic engineering to make microalgae a source of biofuel that is competitive to more traditional sources of biofuel and even to fossil fuel. In this context, the research reported here focused on using a mixotrophic growth mode as a way to increase lipid production for certain strains of microalgae. In addition, nitrogen starvation combined with mixotrophy was studied to analyse its effects on lipid production. Mixotrophy is the parallel usage of two trophic modes, in our case photoautotrophy and heterotrophy. Consequently, 12 algal strains were screened for mixotrophic growth, using glycerol as a carbon source. Glycerol is a waste product of the current biodiesel industry; it is a cheap and abundant carbon source present in many metabolic pathways. From this initial screening, several strains were chosen for subsequent experiments involving nitrogen starvation. Nitrogen starvation has been shown to induce lipid accumulation. The results obtained show that a mixotrophic growth mode, using glycerol as a carbon source, enhances lipid production for certain strains. Moreover, lipid enhancement was shown for nitrogen starvation combined with mixotrophic growth mode. This was dependant on time spent under nitrogen starvation and on initial concentrations of the nitrogen source.