4 resultados para Metastable-state atoms

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les colonnes de plasma entretenues par un champ électrique (continu ou alternatif) à haute pression (p > 10 Torr) sont affectées par les phénomènes de contraction (réduction de la section radiale de la décharge) et de filamentation (fragmentation de la section de plasma en plusieurs filaments). La compréhension de ces phénomènes ainsi que le développement d’une méthode pouvant les supprimer demeurent une étape essentielle pour l’optimisation de certains procédés plasma. Dans cette optique, un premier objectif de notre travail était de déterminer les mécanismes à l’origine de la contraction et de la filamentation dans les décharges créées dans des gaz rares. Ainsi, nous avons montré que dans les plasmas micro-ondes contractés la cinétique de la décharge est contrôlée par les ions moléculaires et que la contraction est liée à l’influence du gradient de la température du gaz sur la concentration de ces ions. De plus, nous avons mis en évidence que la filamentation apparaît lorsque l’inhomogénéité radiale du champ électrique devient importante. Dans un second temps, nous avons développé une méthode de décontraction et de défilamentation de la décharge, qui consiste à ajouter à une décharge initiale de gaz rare des traces d’un autre gaz rare de plus faible potentiel d’ionisation. Dans le cas des plasmas décontractés, nous avons démontré que la cinétique de la décharge n’est plus contrôlée par les ions moléculaires, ce qui confirme bien l’importance de ces ions dans la description de la contraction. Pour terminer, nous avons étendu à la pression atmosphérique la technique d’absorption optique de mesure de densité des états métastables et résonnants à l’aide d’une lampe spectrale, ce qui n’avait été réalisé jusqu’ici que pour des pressions inférieures à 10 Torr. Ces états jouent un rôle essentiel dans l’ionisation des décharges contractées alors que dans les décharges décontractées leur désexcitation par les atomes du gaz adjuvant est l’étape fondamentale du processus de changement de cinétique menant à la décontraction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le recours au plasma pour stériliser des dispositifs médicaux (DM) est un domaine de recherche ne datant véritablement que de la fin des années 1990. Les plasmas permettent, dans les conditions adéquates, de réaliser la stérilisation à basse température (≤ 65°C), tel qu’exigé par la présence de polymères dans les DM et ce contrairement aux procédés par chaleur, et aussi de façon non toxique, contrairement aux procédés chimiques comme, par exemple, l’oxyde d’éthylène (OEt). Les laboratoires du Groupe de physique des plasmas à l’Université de Montréal travaillent à l’élaboration d’un stérilisateur consistant plus particulièrement à employer les effluents d’une décharge N2-%O2 basse pression (2-8 Torrs) en flux, formant ce que l’on appelle une post-décharge en flux. Ce sont les atomes N et O de cette décharge qui viendront, dans les conditions appropriées, entrer en collisions dans la chambre de stérilisation pour y créer des molécules excitées NO*, engendrant ainsi l’émission d’une quantité appréciable de photons UV. Ceux-ci constituent, dans le cas présent, l’agent biocide qui va s’attaquer directement au bagage génétique du micro-organisme (bactéries, virus) que l’on souhaite inactiver. L’utilisation d’une lointaine post-décharge évite du même coup la présence des agents érosifs de la décharge, comme les ions et les métastables. L’un des problèmes de cette méthode de stérilisation est la réduction du nombre de molécules NO* créées par suite de la perte des atomes N et O, qui sont des radicaux connus pour interagir avec les surfaces, sur les parois des matériaux des DM que l’on souhaite stériliser. L’objectif principal de notre travail est de déterminer l’influence d’une telle perte en surface, dite aussi réassociation en surface, par l’introduction de matériaux comme le Téflon, l’acier inoxydable, l’aluminium et le cuivre sur le taux d’inactivation des spores bactériennes. Nous nous attendons à ce que la réassociation en surface de ces atomes occasionne ainsi une diminution de l’intensité UV et subséquemment, une réduction du taux d’inactivation. Par spectroscopie optique d’émission (SOE), nous avons déterminé les concentrations perdues de N et de O par la présence des matériaux dans le stérilisateur, ainsi que la diminution de l’émission UV en découlant. Nous avons observé que cette diminution des concentrations atomiques est d’autant plus importante que les surfaces sont catalytiques. Au cours de l’étude du phénomène de pertes sur les parois pour un mélange N2-%O2 nous avons constaté l’existence d’une compétition en surface entre les atomes N et O, dans laquelle les atomes d’oxygènes semblent dominer largement. Cela implique qu’au-delà d’un certain %O2 ajouté à la décharge N2, seuls les atomes O se réassocient en surface. Par ailleurs, l’analyse des courbes de survie bi-phasiques des micro-organismes a permis d’établir une étroite corrélation, par lien de cause à effet, entre la consommation des atomes N et O en surface et la diminution du taux d’inactivation des spores dans la première phase. En revanche, nous avons constaté que notre principal agent biocide (le rayonnement ultraviolet) est moins efficace dans la deuxième phase et, par conséquent, il n’a pas été possible d’établir un lien entre la diminution des concentrations et le taux d’inactivation de cette phase-là.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’objectif de ce mémoire de maîtrise est de caractériser la distribution axiale des plasmas tubulaires à la pression atmosphérique créés et entretenus par une onde électromagnétique de surface ainsi que d’explorer le potentiel de ces sources pour la synthèse de matériaux et de nanomatériaux. Un précédent travail de thèse, qui avait pour objectif de déterminer les mécanismes à l’origine de la contraction radiale du plasma créé dans des gaz rares, a mis en lumière un phénomène jusque-là inconnu dans les plasmas d’onde de surface (POS). En effet, la distribution axiale varie différemment selon la puissance incidente ce qui constitue une différence majeure par rapport aux plasmas à pression réduite. Dans ce contexte, nous avons réalisé une étude paramétrique des POS à la pression atmosphérique dans l’Ar. À partir de nos mesures de densité électronique, de température d’excitation et de densité d’atomes d’Ar dans un niveau métastable (Ar 3P2), résolues axialement, nous avons conclu que le comportement axial de l’intensité lumineuse avec la puissance n’est pas lié à un changement de la cinétique de la décharge (qui est dépendante de la température des électrons et de la densité d’atomes d’Ar métastables), mais plutôt à une distribution anormale de dissipation de puissance dans le plasma (reliée à la densité d’électrons). Plus précisément, nos résultats suggèrent que ce dépôt anormal de puissance provient d’une réflexion de l’onde dans le fort gradient de densité de charges en fin de colonne, un effet plus marqué pour de faibles longueurs de colonnes à plasma. Ensuite, nous avons effectué une étude spectroscopique du plasma en présence de précurseurs organiques, en particulier le HMDSO pour la synthèse de matériaux organosiliciés et l’IPT pour la synthèse de matériaux organotitaniques. Les POS à la PA sont caractérisés par des densités de charges très élevées (>10^13 cm^-3), permettant ainsi d’atteindre des degrés de dissociation des précurseurs nettement plus élevés que ceux d'autres plasmas froids à la pression atmosphérique comme les décharges à barrière diélectrique. Dans de tels cas, les matériaux synthétisés prennent la forme de nanopoudres organiques de taille inférieure à 100 nm. En présence de faibles quantités d’oxygène dans le plasma, nous obtenons plutôt des nanopoudres à base d’oxyde de silicium (HMDSO) ou à base de titanate de silicium (IPT), avec très peu de carbone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le but de cette thèse était d’étudier la dynamique de croissance par pulvérisation par plasma RF magnétron des couches minces à base d’oxyde de zinc destinées à des applications électroniques, optoélectroniques et photoniques de pointe. Dans ce contexte, nous avons mis au point plusieurs diagnostics permettant de caractériser les espèces neutres et chargées dans ce type de plasmas, notamment la sonde électrostatique, la spectroscopie optique d’émission et d’absorption, ainsi que la spectrométrie de masse. Par la suite, nous avons tenté de corréler certaines caractéristiques physiques de croissance des couches de ZnO, en particulier la vitesse de dépôt, aux propriétés fondamentales du plasma. Nos résultats ont montré que l’éjection d’atomes de Zn, In et O au cours de la pulvérisation RF magnétron de cibles de Zn, ZnO et In2O3 n’influence que très peu la densité d’ions positifs (et donc la densité d’électrons en supposant la quasi-neutralité) ainsi que la fonction de distribution en énergie des électrons (populations de basse et haute énergie). Cependant, le rapport entre la densité d’atomes d’argon métastables (3P2) sur la densité électronique décroît lorsque la densité d’atomes de Zn augmente, un effet pouvant être attribué à l’ionisation des atomes de Zn par effet Penning. De plus, dans les conditions opératoires étudiées (plasmas de basse pression, < 100 mTorr), la thermalisation des atomes pulvérisés par collisions avec les atomes en phase gazeuse demeure incomplète. Nous avons montré que l’une des conséquences de ce résultat est la présence d’ions Zn+ suprathermiques près du substrat. Finalement, nous avons corrélé la quantité d’atomes de Zn pulvérisés déterminée par spectroscopie d’émission avec la vitesse de dépôt d’une couche mince de ZnO mesurée par ellipsométrie spectroscopique. Ces travaux ont permis de mettre en évidence que ce sont majoritairement les atomes de Zn (et non les espèces excitées et/ou ioniques) qui gouvernent la dynamique de croissance par pulvérisation RF magnétron des couches minces de ZnO.