7 resultados para Medical Image Database
em Université de Montréal, Canada
Resumo:
Présentation: Cet article a été publié dans le journal : Computerised medical imaging and graphics (CMIG). Le but de cet article est de recaler les vertèbres extraites à partir d’images RM avec des vertèbres extraites à partir d’images RX pour des patients scoliotiques, en tenant compte des déformations non-rigides due au changement de posture entre ces deux modalités. À ces fins, une méthode de recalage à l’aide d’un modèle articulé est proposée. Cette méthode a été comparée avec un recalage rigide en calculant l’erreur sur des points de repère, ainsi qu’en calculant la différence entre l’angle de Cobb avant et après recalage. Une validation additionelle de la méthode de recalage présentée ici se trouve dans l’annexe A. Ce travail servira de première étape dans la fusion des images RM, RX et TP du tronc complet. Donc, cet article vérifie l’hypothèse 1 décrite dans la section 3.2.1.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a musculoskeletal pathology. It is a complex spinal curvature in a 3-D space that also affects the appearance of the trunk. The clinical follow-up of AIS is decisive for its management. Currently, the Cobb angle, which is measured from full spine radiography, is the most common indicator of the scoliosis progression. However, cumulative exposure to X-rays radiation increases the risk for certain cancers. Thus, a noninvasive method for the identification of the scoliosis progression from trunk shape analysis would be helpful. In this study, a statistical model is built from a set of healthy subjects using independent component analysis and genetic algorithm. Based on this model, a representation of each scoliotic trunk from a set of AIS patients is computed and the difference between two successive acquisitions is used to determine if the scoliosis has progressed or not. This study was conducted on 58 subjects comprising 28 healthy subjects and 30 AIS patients who had trunk surface acquisitions in upright standing posture. The model detects 93% of the progressive cases and 80% of the nonprogressive cases. Thus, the rate of false negatives, representing the proportion of undetected progressions, is very low, only 7%. This study shows that it is possible to perform a scoliotic patient's follow-up using 3-D trunk image analysis, which is based on a noninvasive acquisition technique.
Resumo:
This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.
Resumo:
L'imagerie intravasculaire ultrasonore (IVUS) est une technologie médicale par cathéter qui produit des images de coupe des vaisseaux sanguins. Elle permet de quantifier et d'étudier la morphologie de plaques d'athérosclérose en plus de visualiser la structure des vaisseaux sanguins (lumière, intima, plaque, média et adventice) en trois dimensions. Depuis quelques années, cette méthode d'imagerie est devenue un outil de choix en recherche aussi bien qu'en clinique pour l'étude de la maladie athérosclérotique. L'imagerie IVUS est par contre affectée par des artéfacts associés aux caractéristiques des capteurs ultrasonores, par la présence de cônes d'ombre causés par les calcifications ou des artères collatérales, par des plaques dont le rendu est hétérogène ou par le chatoiement ultrasonore (speckle) sanguin. L'analyse automatisée de séquences IVUS de grande taille représente donc un défi important. Une méthode de segmentation en trois dimensions (3D) basée sur l'algorithme du fast-marching à interfaces multiples est présentée. La segmentation utilise des attributs des régions et contours des images IVUS. En effet, une nouvelle fonction de vitesse de propagation des interfaces combinant les fonctions de densité de probabilité des tons de gris des composants de la paroi vasculaire et le gradient des intensités est proposée. La segmentation est grandement automatisée puisque la lumière du vaisseau est détectée de façon entièrement automatique. Dans une procédure d'initialisation originale, un minimum d'interactions est nécessaire lorsque les contours initiaux de la paroi externe du vaisseau calculés automatiquement sont proposés à l'utilisateur pour acceptation ou correction sur un nombre limité d'images de coupe longitudinale. La segmentation a été validée à l'aide de séquences IVUS in vivo provenant d'artères fémorales provenant de différents sous-groupes d'acquisitions, c'est-à-dire pré-angioplastie par ballon, post-intervention et à un examen de contrôle 1 an suivant l'intervention. Les résultats ont été comparés avec des contours étalons tracés manuellement par différents experts en analyse d'images IVUS. Les contours de la lumière et de la paroi externe du vaisseau détectés selon la méthode du fast-marching sont en accord avec les tracés manuels des experts puisque les mesures d'aire sont similaires et les différences point-à-point entre les contours sont faibles. De plus, la segmentation par fast-marching 3D s'est effectuée en un temps grandement réduit comparativement à l'analyse manuelle. Il s'agit de la première étude rapportée dans la littérature qui évalue la performance de la segmentation sur différents types d'acquisition IVUS. En conclusion, la segmentation par fast-marching combinant les informations des distributions de tons de gris et du gradient des intensités des images est précise et efficace pour l'analyse de séquences IVUS de grandes tailles. Un outil de segmentation robuste pourrait devenir largement répandu pour la tâche ardue et fastidieuse qu'est l'analyse de ce type d'images.
Resumo:
Introduction: Avec l’abondance d’information gratuite disponible en ligne, la tâche de trouver, de trier et d’acheminer de l’information pertinente à l’auditoire approprié peut s’avérer laborieuse. En décembre 2010, la Bibliothèque virtuelle canadienne de santé / Canadian Virtual Health Library (BVCS) a formé un comité d’experts afin d’identifier, d’évaluer, de sélectionner et d’organiser des ressources d’intérêt pour les professionnels de la santé. Méthodes: Cette affiche identifiera les décisions techniques du comité d’experts, incluant le système de gestion de contenus retenu, l’utilisation des éléments Dublin Core et des descripteurs Medical Subject Headings pour la description des ressources, et le développement et l’adaptation de taxonomies à partir de la classification MeSH. La traduction française des descripteurs MeSH à l’aide du portail CISMeF sera également abordée. Résultats: Au mois de mai 2011, le comité a lancé la base de données BVCS de ressources en ligne gratuites sur la santé, regroupant plus de 1600 sites web et ressources. Une variété de types de contenus sont représentés, incluant des articles et rapports, des bases de données interactives et des outils de pratique clinique. Discussion: Les bénéfices et défis d’une collaboration pancanadienne virtuelle seront présentés, ainsi que l’inclusion cruciale d’un membre francophone pour composer avec la nature bilingue de la base de données. En lien avec cet aspect du projet, l’affiche sera présentée en français et en anglais. Introduction: With the abundance of freely available online information, the task of finding, filtering and fitting relevant information to the appropriate audience, is daunting. In December 2010 the Canadian Virtual Health Library / Bibliothèque virtuelle canadienne de santé (CVHL) formed an expert committee to identify, evaluate, select and organize resources relevant to health professionals. Methods: This poster will identify the key technical decisions of the expert committee including the content management system used to manage the data, the use of Dublin Core elements and Medical Subject Headings to describe the resources, and the development and adaptation of taxonomies from MeSH classification to catalog resources. The translation of MeSH terms to French using the CiSMeF portal will also be discussed. Results: In May 2010, the committee launched the CVHL database of free web-based health resources. Content ranged from online articles and reports to videos, interactive databases and clinical practice tools, and included more than 1,600 websites and resources. Discussion: The benefits and challenges of a virtual, pan-Canadian collaboration, and the critical inclusion of a Francophone member to address the bilingual nature of the database, will be presented. In keeping with the nature of the project, the poster will be presented in French and English.
Resumo:
Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.