1 resultado para Manufacturer’s pallet loading problem

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse s’intéresse aux problèmes de tournées de véhicules où l’on retrouve des contraintes de chargement ayant un impact sur les séquences de livraisons permises. Plus particulièrement, les items placés dans l’espace de chargement d’un véhicule doivent être directement accessibles lors de leur livraison sans qu’il soit nécessaire de déplacer d’autres items. Ces problèmes sont rencontrés dans plusieurs entreprises de transport qui livrent de gros objets (meubles, électroménagers). Le premier article de cette thèse porte sur une méthode exacte pour un problème de confection d’une seule tournée où un véhicule, dont l’aire de chargement est divisée en un certain nombre de piles, doit effectuer des cueillettes et des livraisons respectant une contrainte de type dernier entré, premier sorti. Lors d’une collecte, les items recueillis doivent nécessairement être déposés sur le dessus de l’une des piles. Par ailleurs, lors d’une livraison, les items doivent nécessairement se trouver sur le dessus de l’une des piles. Une méthode de séparation et évaluation avec plans sécants est proposée pour résoudre ce problème. Le second article présente une méthode de résolution exacte, également de type séparation et évaluation avec plans sécants, pour un problème de tournées de véhicules avec chargement d’items rectangulaires en deux dimensions. L’aire de chargement des véhicules correspond aussi à un espace rectangulaire avec une orientation, puisque les items doivent être chargés et déchargés par l’un des côtés. Une contrainte impose que les items d’un client soient directement accessibles au moment de leur livraison. Le dernier article aborde une problème de tournées de véhicules avec chargement d’items rectangulaires, mais où les dimensions de certains items ne sont pas connus avec certitude lors de la planification des tournées. Il est toutefois possible d’associer une distribution de probabilités discrète sur les dimensions possibles de ces items. Le problème est résolu de manière exacte avec la méthode L-Shape en nombres entiers.