7 resultados para Magneto rheological damper

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lors du phénomène d’hémostase primaire ou de thrombose vasculaire, les plaquettes sanguines doivent adhérer aux parois afin de remplir leur fonction réparatrice ou pathologique. Pour ce faire, certains facteurs rhéologiques et hémodynamiques tels que l’hématocrite, le taux de cisaillement local et les contraintes de cisaillement pariétal, entrent en jeu afin d’exclure les plaquettes sanguines de l’écoulement principal et de les transporter vers le site endommagé ou enflammé. Cette exclusion pourrait aussi être influencée par l’agrégation de globules rouges qui est un phénomène naturel présent dans tout le système cardiovasculaire selon les conditions d’écoulement. La dérive de ces agrégats de globules rouges vers le centre des vaisseaux provoque la formation de réseaux d’agrégats dont la taille et la complexité varient en fonction de l’hématocrite et des conditions de cisaillement présentes. Il en résulte un écoulement bi-phasique avec un écoulement central composé d’agrégats de globules rouges avoisinés par une région moins dense en particules où l’on peut trouver des globules rouges singuliers, des petits rouleaux de globules rouges et une importante concentration en plaquettes et globules blancs. De ce fait, il est raisonnable de penser que plus la taille des agrégats qui occupent le centre du vaisseau augmente, plus il y aura de plaquettes expulsées vers les parois vasculaires. L'objectif du projet est de quantifier, in vitro, la migration des plaquettes sanguines en fonction du niveau d’agrégation érythrocytaire présent, en faisant varier l’hématocrite, le taux de cisaillement et en promouvant l’agrégation par l’ajout d’agents tels que le dextran à poids moléculaire élevé. Cependant, le comportement non Newtonien du sang dans un écoulement tubulaire peut être vu comme un facteur confondant à cause de son impact sur l’organisation spatiale des agrégats de globules rouges. De ce fait, les études ont été réalisées dans un appareil permettant de moduler, de façon homogène, la taille et la structure de ces agrégats et de quantifier ainsi leur effet sur la migration axiale des plaquettes. Du sang de porc anti coagulé a été ajusté à différents taux d’hématocrite et insérer dans un appareil à écoulement de Couette, à température ambiante. Les plaquettes sanguines, difficilement isolables in vitro sans en activer certains ligands membranaires, ont été remplacées par des fantômes en polystyrène ayant un revêtement de biotine. La quantification de la migration de ces fantômes de plaquettes a été réalisée grâce à l’utilisation de membranes biologiques fixées sur les parois internes de l’entrefer du rhéomètre de Couette. Ces membranes ont un revêtement de streptavidine assurant une très forte affinité d’adhésion avec les microparticules biotynilées. À 40% d’hématocrite, à un cisaillement de 2 s-1, 566 ± 53 microparticules ont été comptées pour un protocole préétabli avec du sang non agrégeant, comparativement à 1077 ± 229 pour du sang normal et 1568 ± 131 pour du sang hyper agrégeant. Les résultats obtenus suggèrent une nette participation de l’agrégation érythrocytaire sur le transport des fantômes de plaquettes puisque l’adhésion de ces derniers à la paroi du rhéomètre de Couette augmente de façon quasi exponentielle selon le niveau d’agrégation présent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’agrégation érythrocytaire est le principal facteur responsable des propriétés non newtoniennes sanguines pour des conditions d’écoulement à faible cisaillement. Lorsque les globules rouges s’agrègent, ils forment des rouleaux et des structures tridimensionnelles enchevêtrées qui font passer la viscosité sanguine de quelques mPa.s à une centaine de mPa.s. Cette organisation microstructurale érythrocytaire est maintenue par des liens inter-globulaires de faible énergie, lesquels sont brisés par une augmentation du cisaillement. Ces propriétés macroscopiques sont bien connues. Toutefois, les liens étiologiques entre ces propriétés rhéologiques générales et leurs effets pathophysiologiques demeurent difficiles à évaluer in vivo puisque les propriétés sanguines sont dynamiques et fortement tributaires des conditions d’écoulement. Ainsi, à partir de propriétés rhéologiques mesurées in vitro dans des conditions contrôlées, il devient difficile d’extrapoler leurs valeurs dans un environnement physiologique. Or, les thrombophlébites se développent systématiquement en des loci particuliers du système cardiovasculaire. D’autre part, plusieurs études cliniques ont établi que des conditions hémorhéologiques perturbées constituent des facteurs de risque de thrombose veineuse mais leurs contributions étiologiques demeurent hypothétiques ou corrélatives. En conséquence, un outil de caractérisation hémorhéologique applicable in vivo et in situ devrait permettre de mieux cerner et comprendre ces implications. Les ultrasons, qui se propagent dans les tissus biologiques, sont sensibles à l’agrégation érythrocytaire. De nature non invasive, l’imagerie ultrasonore permet de caractériser in vivo et in situ la microstructure sanguine dans des conditions d’écoulements physiologiques. Les signaux ultrasonores rétrodiffusés portent une information sur la microstructure sanguine reflétant directement les perturbations hémorhéologiques locales. Une cartographie in vivo de l’agrégation érythrocytaire, unique aux ultrasons, devrait permettre d’investiguer les implications étiologiques de l’hémorhéologie dans la maladie thrombotique vasculaire. Cette thèse complète une série de travaux effectués au Laboratoire de Biorhéologie et d’Ultrasonographie Médicale (LBUM) du centre de recherche du Centre hospitalier de l’Université de Montréal portant sur la rétrodiffusion ultrasonore érythrocytaire et menant à une application in vivo de la méthode. Elle se situe à la suite de travaux de modélisation qui ont mis en évidence la pertinence d’un modèle particulaire tenant compte de la densité des globules rouges, de la section de rétrodiffusion unitaire d’un globule et du facteur de structure. Ce modèle permet d’établir le lien entre la microstructure sanguine et le spectre fréquentiel du coefficient de rétrodiffusion ultrasonore. Une approximation au second ordre en fréquence du facteur de structure est proposée dans ces travaux pour décrire la microstructure sanguine. Cette approche est tout d’abord présentée et validée dans un champ d’écoulement cisaillé homogène. Une extension de la méthode en 2D permet ensuite la cartographie des propriétés structurelles sanguines en écoulement tubulaire par des images paramétriques qui mettent en évidence le caractère temporel de l’agrégation et la sensibilité ultrasonore à ces phénomènes. Une extrapolation menant à une relation entre la taille des agrégats érythrocytaires et la viscosité sanguine permet l’établissement de cartes de viscosité locales. Enfin, il est démontré, à l’aide d’un modèle animal, qu’une augmentation subite de l’agrégation érythrocytaire provoque la formation d’un thrombus veineux. Le niveau d’agrégation, la présence du thrombus et les variations du débit ont été caractérisés, dans cette étude, par imagerie ultrasonore. Nos résultats suggèrent que des paramètres hémorhéologiques, préférablement mesurés in vivo et in situ, devraient faire partie du profil de risque thrombotique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En simulant l’écoulement du sang dans un réseau de capillaires (en l’absence de contrôle biologique), il est possible d’observer la présence d’oscillations de certains paramètres comme le débit volumique, la pression et l’hématocrite (volume des globules rouges par rapport au volume du sang total). Ce comportement semble être en concordance avec certaines expériences in vivo. Malgré cet accord, il faut se demander si les fluctuations observées lors des simulations de l’écoulement sont physiques, numériques ou un artefact de modèles irréalistes puisqu’il existe toujours des différences entre des modélisations et des expériences in vivo. Pour répondre à cette question de façon satisfaisante, nous étudierons et analyserons l’écoulement du sang ainsi que la nature des oscillations observées dans quelques réseaux de capillaires utilisant un modèle convectif et un modèle moyenné pour décrire les équations de conservation de masse des globules rouges. Ces modèles tiennent compte de deux effets rhéologiques importants : l’effet Fåhraeus-Lindqvist décrivant la viscosité apparente dans un vaisseau et l’effet de séparation de phase schématisant la distribution des globules rouges aux points de bifurcation. Pour décrire ce dernier effet, deux lois de séparation de phase (les lois de Pries et al. et de Fenton et al.) seront étudiées et comparées. Dans ce mémoire, nous présenterons une description du problème physiologique (rhéologie du sang). Nous montrerons les modèles mathématiques employés (moyenné et convectif) ainsi que les lois de séparation de phase (Pries et al. et Fenton et al.) accompagnés d’une analyse des schémas numériques implémentés. Pour le modèle moyenné, nous employons le schéma numérique explicite traditionnel d’Euler ainsi qu’un nouveau schéma implicite qui permet de résoudre ce problème d’une manière efficace. Ceci est fait en utilisant une méthode de Newton- Krylov avec gradient conjugué préconditionné et la méthode de GMRES pour les itérations intérieures ainsi qu’une méthode quasi-Newton (la méthode de Broyden). Cette méthode inclura le schéma implicite d’Euler et la méthode des trapèzes. Pour le schéma convectif, la méthode explicite de Kiani et al. sera implémentée ainsi qu’une nouvelle approche implicite. La stabilité des deux modèles sera également explorée. À l’aide de trois différentes topologies, nous comparerons les résultats de ces deux modèles mathématiques ainsi que les lois de séparation de phase afin de déterminer dans quelle mesure les oscillations observées peuvent être attribuables au choix des modèles mathématiques ou au choix des méthodes numériques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La réduction de la taille des particules jusqu’à l’obtention de nanocristaux est l’une des approches utilisées afin d’améliorer la pénétration cutanée des médicaments à usage topique. Nous proposons que la fabrication d’une formulation semi solide (hydrogel) à base de nanosuspension de docosanol, aboutira à une diffusion du principe actif supérieure à celle du produit commercial Abreva®, à travers des membranes synthétiques de polycarbonates. Le broyage humide est la technique proposée pour la production des nanoparticules de docosanol. Nous proposons aussi la préparation d’une formulation semi-solide (hydrogel) à usage topique à partir de la nanosuspension de docosanol. La nanosuspension de docosanol est obtenue par dispersion du docosanol en solution aqueuse en présence du polymère stabilisant hydroxypropylcellulose (HPC) et du surfactant laurylsulfate de sodium (SDS) suivi d’un broyage humide à faible ou à haute énergie. L’hydrogel de docosanol nanoformulé est préparé à l’aide de la nanosuspension de docosanol qui subit une gélification par le carbopol Ultrez 21 sous agitation mécanique suivie d’une neutralisation au triéthanolamine TEA. La taille des particules de la nanosuspension et de l’hydrogel a été déterminée par diffusion dynamique de la lumière (DLS). Une méthode analytique de chromatographie liquide à haute performance (HPLC) munie d’un détecteur évaporatif (ELSD) a été développée et validée pour évaluer la teneur de docosanol dans les préparations liquides, dans les différentes nanosuspensions et dans les hydrogels de docosanol. L’état de cristallinité des nanocristaux dans la nanosuspension et dans l’hydrogel a été étudié par calorimétrie différentielle à balayage. La morphologie de la nanosuspension et de l’hydrogel de docosanol a été examinée par microscopie électronique à balayage (MEB). Les propriétés rhéologiques et de stabilité physique à différentes températures ont été aussi étudiées pour la formulation semi-solide (hydrogel). De même, la libération in vitro du docosanol contenu dans l’hydrogel et dans le produit commercial Abreva® a été étudiée à travers deux membranes de polycarbonates de taille de pores 400 et 800 nm. Dans le cas de nanosuspensions, des cristaux de docosanol de taille nanométrique ont été produits avec succès par broyage humide. Les nanoparticules de tailles variant de 197 nm à 312 nm ont été produites pour des pourcentages différents en docosanol, en polymère HPC et en surfactant SDS. Après lyophilisation, une augmentation de la taille dépendant de la composition de la formulation a été observée tout en restant dans la gamme nanométrique pour la totalité presque des formulations étudiées. Dans le cas des hydrogels examinés, la taille moyenne des particules de docosanol est maintenue dans la gamme nanométrique avant et après lyophilisation. L’analyse thermique des mélanges physiques, des nanosuspensions et des hydrogels de docosanol a révélé la conservation de l’état de cristallinité des nanocristaux de docosanol après broyage et aussi après gélification. L’examen par microscopie électronique à balayage (MEB) a montré que la nanosuspension et l’hydrogel ont tous deux une morphologie régulière et les nanoparticules ont une forme sphérique. De plus les nanoparticules de la nanosuspension ont presque la même taille inférieure à 300 nm en accord avec le résultat obtenu par diffusion dynamique de la lumière (DLS). Les nanoparticules de l’hydrogel ont une légère augmentation de taille par rapport à celle de la nanosuspension, ce qui est en accord avec les mesures de DLS. D’après les mesures rhéologiques, l’hydrogel de docosanol a un comportement pseudoplastique et un faible degré de thixotropie. L’étude de stabilité physique a montré que les formulations d’hydrogel sont stables à basse température (5°C) et à température ambiante (21°C) pendant une période d’incubation de 13 semaines et instable au-delà de 30°C après deux semaines. La méthode HPLC-ELSD a révélé des teneurs en docosanol comprises entre 90% et 110% dans le cas des nanosuspensions et aux alentours de 100% dans le cas de l’hydrogel. L’essai de diffusion in vitro a montré qu’il y a diffusion de docosanol de l’hydrogel à travers les membranes de polycarbonates, qui est plus marquée pour celle de pore 800 nm, tandis que celui du produit commercial Abreva® ne diffuse pas. Le broyage humide est une technique bien adaptée pour la préparation des nanosuspensions docosanol. Ces nanosuspensions peuvent être utilisée comme base pour la préparation de l’hydrogel de docosanol nanoformulé.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'élastographie ultrasonore est une technique d'imagerie émergente destinée à cartographier les paramètres mécaniques des tissus biologiques, permettant ainsi d’obtenir des informations diagnostiques additionnelles pertinentes. La méthode peut ainsi être perçue comme une extension quantitative et objective de l'examen palpatoire. Diverses techniques élastographiques ont ainsi été proposées pour l'étude d'organes tels que le foie, le sein et la prostate et. L'ensemble des méthodes proposées ont en commun une succession de trois étapes bien définies: l'excitation mécanique (statique ou dynamique) de l'organe, la mesure des déplacements induits (réponse au stimulus), puis enfin, l'étape dite d'inversion, qui permet la quantification des paramètres mécaniques, via un modèle théorique préétabli. Parallèlement à la diversification des champs d'applications accessibles à l'élastographie, de nombreux efforts sont faits afin d'améliorer la précision ainsi que la robustesse des méthodes dites d'inversion. Cette thèse regroupe un ensemble de travaux théoriques et expérimentaux destinés à la validation de nouvelles méthodes d'inversion dédiées à l'étude de milieux mécaniquement inhomogènes. Ainsi, dans le contexte du diagnostic du cancer du sein, une tumeur peut être perçue comme une hétérogénéité mécanique confinée, ou inclusion, affectant la propagation d'ondes de cisaillement (stimulus dynamique). Le premier objectif de cette thèse consiste à formuler un modèle théorique capable de prédire l'interaction des ondes de cisaillement induites avec une tumeur, dont la géométrie est modélisée par une ellipse. Après validation du modèle proposé, un problème inverse est formulé permettant la quantification des paramètres viscoélastiques de l'inclusion elliptique. Dans la continuité de cet objectif, l'approche a été étendue au cas d'une hétérogénéité mécanique tridimensionnelle et sphérique avec, comme objectifs additionnels, l'applicabilité aux mesures ultrasonores par force de radiation, mais aussi à l'estimation du comportement rhéologique de l'inclusion (i.e., la variation des paramètres mécaniques avec la fréquence d'excitation). Enfin, dans le cadre de l'étude des propriétés mécaniques du sang lors de la coagulation, une approche spécifique découlant de précédents travaux réalisés au sein de notre laboratoire est proposée. Celle-ci consiste à estimer la viscoélasticité du caillot sanguin via le phénomène de résonance mécanique, ici induit par force de radiation ultrasonore. La méthode, dénommée ARFIRE (''Acoustic Radiation Force Induced Resonance Elastography'') est appliquée à l'étude de la coagulation de sang humain complet chez des sujets sains et sa reproductibilité est évaluée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse s’intéresse à la modélisation magnétohydrodynamique des écoulements de fluides conducteurs d’électricité multi-échelles en mettant l’emphase sur deux applications particulières de la physique solaire: la modélisation des mécanismes des variations de l’irradiance via la simulation de la dynamo globale et la reconnexion magnétique. Les variations de l’irradiance sur les périodes des jours, des mois et du cycle solaire de 11 ans sont très bien expliquées par le passage des régions actives à la surface du Soleil. Cependant, l’origine ultime des variations se déroulant sur les périodes décadales et multi-décadales demeure un sujet controversé. En particulier, une certaine école de pensée affirme qu’une partie de ces variations à long-terme doit provenir d’une modulation de la structure thermodynamique globale de l’étoile, et que les seuls effets de surface sont incapables d’expliquer la totalité des fluctuations. Nous présentons une simulation globale de la convection solaire produisant un cycle magnétique similaire en plusieurs aspects à celui du Soleil, dans laquelle le flux thermique convectif varie en phase avec l’ ́energie magnétique. La corrélation positive entre le flux convectif et l’énergie magnétique supporte donc l’idée qu’une modulation de la structure thermodynamique puisse contribuer aux variations à long-terme de l’irradiance. Nous analysons cette simulation dans le but d’identifier le mécanisme physique responsable de la corrélation en question et pour prédire de potentiels effets observationnels résultant de la modulation structurelle. La reconnexion magnétique est au coeur du mécanisme de plusieurs phénomènes de la physique solaire dont les éruptions et les éjections de masse, et pourrait expliquer les températures extrêmes caractérisant la couronne. Une correction aux trajectoires du schéma semi-Lagrangien classique est présentée, qui est basée sur la solution à une équation aux dérivées partielles nonlinéaire du second ordre: l’équation de Monge-Ampère. Celle-ci prévient l’intersection des trajectoires et assure la stabilité numérique des simulations de reconnexion magnétique pour un cas de magnéto-fluide relaxant vers un état d’équilibre.